Computer Vision Il - Lecture 15

Repetition

15.07.2014

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcements

e Exams

- Proposed dates
- 29./30.07.
- 22./23.009.

- Please enter your preferences in the Doodle poll | sent around
~ If none of the dates work for you, please contact me.

e Exam Procedure
> Oral exams
> Duration 30min
~ | will give you 4 questions and expect you to answer 3 of them.
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B. Leibe


http://doodle.com/w4fbvigkxa9icu2u

RWTHAACHEN
UNIVERSITY
Announcements (2)

e Lecture Evaluation
> Please fill out the forms...
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B. Leibe



Announcements (3)

e Today, I’'ll summarize the most important points from
the lecture.
~ It is an opportunity for you to ask questions...
~ ...or get additional explanations about certain topics.
> So, please do ask.

e Today’s slides are intended as an index for the lecture.
~ But they are not complete, won’t be sufficient as only tool.

> Also look at the exercises - they often explain algorithms in
detail.
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
e Multi-Object Tracking

e Articulated Tracking

5

Image source: Tobias Jaeggli



RWTH
Recap: Gaussian Background Model

e Statistical model

> Value of a pixel represents a measure-
ment of the radiance of the first object
intersected by the pixel’s optical ray.

~ With a static background and static
lighting, this value will be a constant
affected by i.i.d. Gaussian noise.

» Test if a newly observed pixel value has a high likelihood
under this Gaussian model.

= Automatic estimation of a sensitivity threshold for each pixel.
B. Leibe
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A o Idea

§ ~ Model the background distribution of each pixel by a single
— Gaussian centered at the mean pixel value:
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Recap: MoG Background Model

e Improved statistical model

» Large jumps between different pixel values !|
because different objects are projected onto
the same pixel at different times. |

> While the same object is projected onto the
pixel, small local intensity variations due to
Gaussian noise.

0 L

e ldea
~ Model the color distribution of each pixel by a mixture of K

Gaussians K
p(x) = ZWkN(Xn|”ka k)
k=1

» Evaluate likelihoods of observed pixel values under this model.

> Or let entire Gaussian components adapt to foreground objects
and classify components as belonging to object or background.
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B. Leibe Image source: Chris Bischop




RWTH
Recap: Stauffer-Grimson Background Model

e |dea
> Model the distribution of each pixel by a mixture of K Gaussians

K
p(x) =Y meN(xn |ty k) where Xy = o2I
k=1
» Check every new pixel value against the existing KX components
until a match is found (pixel value within 2.5 o, of u,).
~ If a match is found, adapt the corresponding component.

- Else, replace the least probable component by a distribution
with the new value as its mean and an initially high variance and
low prior weight.

-~ Order the components by the value of w, /o, and select the best
B components as the background model, where

b
B = arg min (Z% > T
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b 8

[C. Stauffer, W.E.L. Grimson, CVPR’99]




RWTH
Recap: Stauffer-Grimson Background Model

e Online adaptation

> Instead of estimating the MoG using EM, use a simpler online
adaptation, assigning each new value only to the matching
component.

- Let M, , = 1 iff component £ is the model that matched, else 0.

7T,(€t+1) = (1— a)w,(:) + a My, ¢

p = aN (x,|py, i)
(i.e., the update is weighted by the component likelihood)

<
'g - Adapt only the parameters for the matching component
t+1 t
s Y = (1= )y + paY
= t+1 t t+1 t+1
g B = (1= B+ oY = ) Y )T
L where
g
2
S
O
3}

. 9
B. Leibe [C. Stauffer, W.E.L. Grimson, CVPR’99]



RWTH
Recap: Kernel Background Modeling

e Nonparametric density estimation

~ Estimate a pixel’s background distribution using the kernel
density estimator K(-) as

N
1 .
p(x¥) = 7 2 K —x1)
1=1

. Choose K to be a Gaussian N(0, X) with X = diag{c }. Then
(8) (92
1 N d 1 _ 1 (mj T )
() — — e %

. A pixel is considered foreground if p(x(*)) < 6 for a threshold 6.

- This can be computed very fast using lookup tables for the kernel
function values, since all inputs are discrete values.

- Additional speedup: partial evaluation of the sum usually sufficient

_ 10
B. Leibe [A. Elgammal, D. Harwood, L. Davis, ECCV’00]
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RWTHAACHEN
. UNIVERSITY
Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
> Color based tracking
> Contour based tracking
> Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
e Multi-Object Tracking
e Articulated Tracking
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14
Image source: Robert Collins




Recap: Estimating Optical Flow

./ Q *
N o
o—> i (@) .
(X,y,t-1) 1(X,y,1)

e Optical Flow

» Given two subsequent frames, estimate the apparent motion
field u(z,y) and v(z,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Lucas-Kanade Optical Flow

e Use all pixels in a KxK window to get more equations.
e Least squares problem:

- I:(p1) Iy(p1) | - Ii(p1) |
ICB(pZ) Iy(PZ) U ] — _ [t(pZ) A d=0b
: : v 5 25x2 2x1 25x1
| Ix(p2s) Iy(p2s) | i (p2s) |

e Minimum least squares solution given by solution of

(ATA) d= Alb

%5 -~ oyl Recall the

Harris detector!

SLly SLIy||uw|_ | Sl ]
SILly Sy || v |~ | STyl

AT A Alp

B. Leibe
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16
Slide adapted from Svetlana Lazebnik



Recap: Iterative Refinement

e Estimate velocity at each | ﬁ o
pixel using one iteration of v,
LK estimation. | :

e Warp one image toward the \ e e
other using the estimated v [
flow field. N\ o

e Refine estimate by repeating : "
the process. ' A=), )

Initial guess: do
Estimate: d3 = do + d

e |terative procedure
~ Results in subpixel accurate localization.
» Converges for small displacements.

ol J

A fi(z — d3) = fa(=)
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RWTHAACHEN
UNIVERSITY

Recap: Coarse-to-fine Optical Flow Estimation
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Computer Vision Il, Summer’14
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Slide credit: Steve Seitz B. Leibe



Computer Vision Il, Summer’14

AACHE
UNIVERSITY
Recap: Coarse-to-fine Optical Flow Estimation

I I
I)\\ I’)\\\
NN !
\ 1)

- ——, Runiterative LK _______ -

lWarp & upsample

- ——> Run iterative LK +—;

Gaussian pyramid of image 1

Gaussian pyramid of image 2

Slide credit: Steve Seitz B. Leibe
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RWNTH
Recap: Shi-Tomasi Feature Tracker (—KLT)

e Idea

- Find good features using eigenvalues of second-moment matrix

> Key idea: “good” features to track are the ones that can be
tracked reliably.

e Frame-to-frame tracking
> Track with LK and a pure translation motion model.

> More robust for small displacements, can be estima-
ted from smaller neighborhoods (e.g., 5x5 pixels).

e Checking consistency of tracks
~  Affine registration to the first observed feature instance.
- Affine model is more accurate for larger displacements. EE’
> Comparing to the first frame helps to minimize drift. Ez%
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J. Shi and C. Tomasi. Good Features to Track. CVPR 1994,
B. Leibe

Slide credit: Svetlana Lazebnik


http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf
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RWTH
Recap: General LK Image Registration

e Goal

> Find the warping parameters p that minimize the sum-of-
squares intensity difference between the template image 7(x)
and the warped input image /(W (x;p)).

e LK formulation
» Formulate this as an optimization problem

arg min ST IW(x;p)) — T(x)]

> We assume that an initial estimate of p is known and iteratively
solve for increments to the parameters Ap:

arg Igigl I(W(x;p+Ap)) — T(x)) 2

X

21
B. Leibe



Recap: Step-by-Step Derivation

e Key to the derivation
> Taylor expansion around Ap

oW
I(W(x;p+ Ap)) = I(W(x;p)) + VI gANO(ApQ)
=I(W(lz,yl;p1,---,Dn))
E -OW,  OW, OW,, - Ap1
@ N [ﬂ 8_1} dpr Opzx " Opn || Ap2
= oz Oy || aw, ow, W, :
(7] ) 0 Tt Opn
i P1 b2 b _Apn_
Z% Gradient Jacobian Increment
; parameters
5 to solve for
§ VI oW Ap
o op 22

Slide credit: Robert Collins B. Leibe



Recap: General LK Algorithm

e |terate
. Warp I to obtain I(W ([z, 3|; p))

» Compute the error image 7([x, y|) — IW (|z, y]; P))

. Warp the gradient VI with W ([z, y|; p)

OW
Op

» Compute steepest descent images V/ %i;’

- Evaluate at (|z, y|; P) (Jacobian)

2T -

- Compute Hessian matrix H =) __ [VI %% [VI Qg
T ] B

. Compute S [VI %%} T([z,y]) — I(W([z,y];p))]

T
- ComputeAp = H' Y, [VIGN | [z y)) — I(W([a, y]; p))]
- Update the parameters p + p + Ap
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e Until Ap magnitude is negligible )3

B. Leibe [S. Baker, |. Matthews, 1JCV’04]
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Recap:

R ONVERSITY
General LK Algorithm Visualization

Image Image Gradient X Image Gradient Y

Temp_l_ate

T(x)

Warped

Wix;
(W(x;p)) Warp Parameters Warped Gradients Jacobian

-
S

Parameter Updates
Inverse Hessian

N
[ - = =

oo
a0t

" 2 3 & 5 © II-]
Hessian

e e

SD Parameter Updates
=10

Steepest Descent Images

5 24
S VIZYIT(T(x) — I(W(x; p))] [S. Baker, I. Matthews, 1JCV’04]
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
e Multi-Object Tracking

e Articulated Tracking

£
¢ Yama
S
S
— | R a ;\I
AR
Al L N,

25

Image source: Robert Collins



RWTHAACHEN

UNIVERSITY
Recap: Mean-Shift
! Region of )
® interest
! Center of \
® ~ Mmass
¢ »
® ®

S I ¢
£ ?
£
(,3,“ ®
= o
9
D
S
= Mean Shift
"é_ @ [ vector J
3
o Objective: Find the densest region

Slide by Y. Ukrainitz & B. Sarel



RWTH
Recap: Using Mean-Shift on Color Models

e Two main approaches

1. Explicit weight images
- Create a color likelihood image, with pixels

weighted by the similarity to the desired
color (best for unicolored objects).

- Use mean-shift to find spatial modes of the likelihood.

0.35

2. Implicit weight images
- Represent color distribution by a histogram. .

- Use mean-shift to find the region that has the
most similar color distribution.

Probability
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Slide credit: Robert Collins B. Leibe
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Mean-Shift on Weight Images

e |deal case

> Want an indicator function that returns 1 for pixels on the
tracked object and O for all other pixels.

e Instead
> Compute likelihood maps

~ Value at a pixel is proportional to the likelihood
that the pixel comes from the tracked object.

e Likelihood can be based on
~ Color
> Texture
> Shape (boundary)
> Predicted location

Slide credit: Robert Collins B. Leibe
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Recap: Mean-Shift Tracking

e Mean-Shift finds the mode of an explicit likelihood image

Kernel weight Weight from the :

o ta : Offset of pixel a
evaluated at likelihood image to Kk l ¢
offset (a — x) at pixel a O Kerne’ center x

l

=> Mean-shift computes the weighted mean of all
shifts (offsets), weighted by the point likelihood

and the kernel function centered at x.
B. Leibe

* >. K@ x)u(a)(a - x)
'iq—’ Ax =

: 2 K(a—x)w(a)
g — ~ _/
5 )

= Sum over all pixels a L

S under kernel K Normalization
L term

g

a

£

o
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Recap: Explicit Weight Images

e Histogram backprojection

- Histogram is an empirical estimate of p(color | object) = p(c | o)
p(clo)p(o)
. Bayes’ rule says: p(o|c) =
p(c)

- Simplistic approximation: assume p(0)/p(c) is constant.
= Use histogram h as a lookup table to set pixel values in the
weight image.

- If pixel maps to histogram bucket i, set weight for pixel to h(7).

. 30
Slide credit: Robert Collins B. Leibe Image source: Gary Bradski
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RWTH
Recap: Scale Adaptation in CAMshift

Mean shift window
initialization

<
-—
.
(«})
=
=
-
(/]
c
o
2
>
-
Q
-
-
(o}

31

Image source: http://docs.opencv.org/trunk/doc/py_tutorials/py_video/py_meanshift/py_meanshift.html
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Recap: Tracking with Implicit Weight Images

Target Model Target Candidate
(centered at 0) (centered at y)
q:{qu}u—lm Zlquzl p.(y):{pu(y)}uzl..m leuzl

Similarity oS i
Function: f(y)_f[q’p(yﬂ

. 32
Slide by Y. Ukrainitz & B. Sarel B. Leibe
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Recap: Comaniciu’s Mean-Shift

e Color histogram representation

target model: a4 =1uty=1m

target candidate: P(y) = 10u(¥) Fumi

e Measuring distances between histograms
> Distance as a function of window location y

d(y)=+/1—p[p(¥).4] ,

- where j(y) is the Bhattacharyya coefficient

ﬁcy:‘ =p [ﬁ(y)= E]] = Z_: .ﬁu'{yz"f?u -

Slide credit: Robert Collins B. LeIDe
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Recap: Comaniciu’s Mean-Shift

e Compute histograms via Parzen estimation

du=0C)_k(lIx|*) [b(x}) — 4] ,
=1

HF—}Q

) 5bxs) — ] |

- where k() is some radially symmetric smoothing kernel profile,
x; is the pixel at location ¢, and b(x;) is the index of its bin in
the quantized feature space.

e Consequence of this formulation
> Gathers a histogram over a neighborhood

~ Also allows interpolation of histograms centered around an
off-lattice location.

Slide credit: Robert Collins B. Leibe
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RWNTH
Recap: Result of Taylor Expansion

e Simple update procedure: At each iteration, perform

LIS .
e el

Y1 = S g (HEI_}LH )

> which is just standard mean-shift on (implicit) weight image w,.

where g{z) = —F'(x).

- Let’s look at the weight image more closely. For each pixel x,
This is only 1
Z d [b(xi) — u] once in the
summation

= If pixel x,’s value maps to histogram bucket B, then

W; = \/QB/pB(YO)

Slide credit: Robert Collins B. Leibe
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
> Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
e Multi-Object Tracking

e Articulated Tracking

36

Image source: Yuri Boykov



Recap: Deformable Contours

e Given
> Initial contour (model) near desired object

e Goal

~ Evolve the contour to fit the exact object
boundary

e Main ideas

» Iteratively adjust the elastic band so as to be near image
positions with high gradients, and

~ Satisfy shape “preferences” or contour priors
> Formulation as energy minimization problem.

M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active Contour Models,
IJCV1988.
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Slide credit: Kristen Grauman B. Leibe Image source: Yuri Boykov



http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf
http://www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf

Recap: Energy Function

e Definition
» Total energy (cost) of the current snake @

E . =E_.  +E

total Interna external

e Internal energy

~ Encourage prior shape preferences: e.g., smoothness,
elasticity, particular known shape.

e External energy

» Encourage contour to fit on places where image structures
exist, e.g., edges.

= Good fit between current deformable contour and target shape
in the image will yield a low value for this cost function.
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Slide credit; Kristen Grauman B. Leibe
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Recap: Energy Formulation

e Total energy

Etotal — Einternal +®Eexternal

~ with the component terms

n—1
Eevternal = — Zl G, (X, ;) I +] G, (%, ;) B
i—0

n-1 -
o = 3 @8- aulf + (-2 +u.f
1=0

Behavior can be controlled by adapting the weights a, 5, ~.

Slide credit; Kristen Grauman B. Leibe
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Recap: Extension with Shape Priors

e Shape priors

~ |If object is some smooth variation on
a known shape, we can use a term that
will penalize deviation from that shape:

n-1
A N2
Einternal T=a: Z (Vi o Vi)
1=0

where {V.} are the points of the known
shape.
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Slide credit; Kristen Grauman B. Leibe
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RWNTH
Recap: Greedy Energy Minimization

e Greedy optimization

~ For each point, search window around it
and move to where energy function is
minimal.

~ Typical window size, e.g., 5x5 pixels

e Stopping criterion

~ Stop when predefined number of points
have not changed in last iteration,
or after max number of iterations.

 Note:
» Local optimization - need decent initialization!
» Convergence not guaranteed

Slide credit; Kristen Grauman B. Leibe
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RWNTH
Recap: Energy Min. by Dynamic Programming

e Dynamic Programming solution
> Limit possible moves to neighboring pixels (discrete states).
» Find the best joint move of all points using Viterbi algorithm.

~ Iterate until optimal position for each point is the center of
the box, i.e., the snake is optimal in the local search space
constrained by boxes.
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Slide credit: Kristen Grauman [Amini, Weymouth, Jain, 1990] Figure source: Yuri Boykov
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Recap: Viterbi Algorithm

e Main idea:
- Determine optimal state of predecessor, for each possible state
~ Then backtrack from best state for last vertex

Etotal — El(vl’VZ) + E2 (V2 ! VS) t...F En—l(vn—l’vn)
,g “El(vl,vz)“‘Ez (VZ,V32“E3 (v3,v42“ E, (v4,vrl)‘
states g

E(1)=0 E,(1) E.(1) E, () E, (1)

1 - @
2 EAZ)MZ) e
E(3)=0 n‘3)
_ E,(m)=0 n‘m)

Complexity: O(nm?) vs. brute force search _____ ? 43

Slide credit: Kristen Grauman, adapted from Yuri Boykov



RO ONNERSITY
Recap: Tracking via Deformable Contours

e Idea

1. Use final contour/model extracted at frame ¢ as an initial
solution for frame ¢t-+1

2. Evolve initial contour to fit exact object boundary at frame t+41
3. Repeat, initializing with most recent frame.

Tracking Heart Ventricles
(multiple frames)
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Slide credit; Kristen Grauman B. Leibe



Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
> Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering

e Multi-Object Tracking

e Articulated Tracking
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Image source: Helmut Grabner, Disney/Pixar




ACHEN
UR J{ le Y
Recap: Tracking as Online Classification

e Tracking as binary classification problem

i

5

£

€ object
7]

= VS.
4 background
>

o

5

Q.

£

o]

&)

' 46
Slide credit: Helmut Grabner B. Leibe Image source: Disney /Pixar




UNVERSITY
Recap: Tracking as Online Classification

e Tracking as binary classification problem

object

VvSs.
background

> Handle object and background changes by online updating
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Slide credit: Helmut Grabner B. Leibe Image source: Disney /Pixar
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R\WNTH
Recap: AdaBoost - “Adaptive Boosting”

e Main idea [Freund & Schapire, 1996]
~ lteratively select an ensemble of classifiers

~ Reweight misclassified training examples after each iteration
to focus training on difficult cases.

e Components

> h,(x): “weak” or base classifier
- Condition: <50% training error over any distribution
> H(x): “strong” or final classifier

e AdaBoost:

> Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

H(x) = sign (Z amhm(x)>

B. Leibe
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Recap: AdaBoost - Algorithm

1. Initialization: Set w(") = ]iv forn=1,...,N.

2. For m=1,...,M iterations

a) Train a new weak classifier h_(x) using the current weighting
coefficients W (™ by minimizing the weighted error function

N A i frria
T = S0 (%) # ) 1) - {(1) i A is true
n=1

), else
b) Estimate the weighted error of this classifier on X:
_ Caa @i (i () # t)
€m =
Sy wn”

c) Calculate a weighting coefficient for h, (x):

]-_ m
amzln{ c }
Em

d) Update the weighting coefficients:
w,,(lmH) — w,,(zm) exp {am I (hm(Xn) #tn)}

B. Leibe
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Recap: From Offline to Online Boosting

e Main issue
» Computing the weight distribution for the samples.

> We do not know a priori the difficulty of a sample!
(Could already have seen the same sample before...)

e |dea of Online Boosting

~ Estimate the importance of a sample by propagating it through
a set of weak classifiers.

> This can be thought of as modeling the information gain w.r.t.
the first n classifiers and code it by the importance weight \ for

the n+1 classifier.

» Proven [Oza]: Given the same training set, Online Boosting
converges to the same weak classifiers as Offline Boosting in the
limit of V — oo iterations.

N. Oza and S. Russell. Online Bagging and Boosting.

Artificial Intelligence and Statistics, 2001.
B. Leibe
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http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf
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Recap: From Offline to Online Boosting

off-line

Given:

- set of labeled training samples

X = {<X13y1>: cees <XLayL> | Yq + 1}

- weight distribution over them

Do=1/L

for n =1 to N

- train a weak classifier using
samples and weight dist.

heak(x) = L(X, Dp_1)
calculate error ¢€n

calculate weight an/==f(en)

update weight dist. Dp

next

N
RETOMI(x) = sign( Y o - hip®F(x))

n=—1

Slide credit: Helmut Grabner

on-line

Given:
- ONE labeled training sample
(X9 ly+1

- strong classifier to update

- initial importance A =1

for n =1 to N

- update the weak classifier using

samples and importance
Ryt (x) = L(REEF, (2, y), M)

update error estimation®n

update weight &vp = f(en)

update importance weight A

next

N
RTONI(x) = sign( Y am - ¥R (x))

n=1

B. Leibe
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Recap: Online Boosting for Feature Selection

hSelector

e Introducing “Selector”

> Selects one feature from its local @
feature pool

Hweak — {hviueak’ o h%ak}

F=A{f1,-fu}

hsel(x) — h%uleak(x)
m = arg min; e;

On-line boosting is performed on
the Selectors and not on the @
weak classifiers directly.

H. Grabner and H. Bischof.
On-line boosting and vision.
CVPR, 2006. 52
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Slide credit: Helmut Grabner B. Leibe


http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215

Recap: Direct Feature Selection

= alOJOIONCIOIC N

N

gloabal feak classifer pool

repeat for each .
trainingsample current strong classifier hStrong

hSelector; hSelector, Selectory
estimate estimate estimate
errors errors errors

< inital estimate estimate '

— importance select best importance select best importance ' select best
s =1 weak A weak % ' weak
QE’ classifier classifier classifier
=)
7]

= 05 (05) N

— Y A\ 4

c update update update
(o) weight weight weight
2 | |

> Y

S

(<]

el

=

Q

S

o}
&

e Shared feature pool for all selectors to save computation
53

Slide credit: Helmut Grabner B. Leibe
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RWTHAACHEN
UNIVERSITY

Recap: Tracking by Online Classification

Attual

Update classifier
(tracker)

Slide credit: Helmut Grabner

from time ¢t to t+1

=
Search
region

Evaluate classifier
on sub-patches

—
r— g
. > - \ g
[ €
| i -

7

.. \ _,’ .:J

.\/

Analyze map and set
new object position

B. Leibe

!

Create
confidence map

Image source: Disney /Pixar
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Recap: Self-Learning and Drift

e Drift

> Major problem in all adaptive or self-learning
trackers.

~ Difficulty: distinguish “allowed” appearance
changes due to lighting or viewpoint variation
from “unwanted” appearance change due to
drifting.

> Cannot be decided based on the tracker
confidence!

e Several approaches to address this
» Comparison with initialization
> Semi-supervised learning (additional data)
> Additional information sources

B. Leibe

4 B ad Ao
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Tracked Patches
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08|
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
> Color based tracking
> Contour based tracking
> Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering

e Multi-Object Tracking
e Articulated Tracking
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Image source: Helmut Grabner, Disney/Pixar
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Recap: Tracking-by-Detection

e Main ideas
~ Apply a generic object detector to find objects of a certain class
- Based on the detections, extract object appearance models
» Link detections into trajectories
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B. Leibe
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Elements of Tracking

-~
/7 ’.\ \ l/ *
I ® \a? :
\ o | Q /

-

¢ «_ .7 ©
O
Detection Data association Prediction

e Detection
- Where are candidate objects?

e Data association
» Which detection corresponds to which object?

e Prediction
~ Where will the tracked object be in the next time step?

B. Leibe
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Recap: Sliding-Window Object Detection

Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

Slide credit: Kristen Grauman

Training examples

il
N

\:

Feature

r

\_ extraction Y

B. Leibe

\.

Car/non-car
Classifier

~\

J
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Recap: Object Detector Design

e In practice, the classifier often determines the design.

~ Types of features
~ Speedup strategies

e We’ve looked at 2 state-of-the-art detector designs

> Based on SVMs
— HOG, DPM detectors

~ Based on Boosting
— Viola-Jones, VeryFast, Roerei detectors

> Based on Random Forests
— (Cut due to time constraints...)

B. Leibe
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Recap: Histograms of Oriented Gradients (HOG)

e Holistic object representation Object/Non-object

Collect HOGs over
detection window

?
Contrast normalize over

?
> Localized gradient orientations Linear SVM
?

Image Window

E overlapping spatial cells
2 f

g Weighted vote in spatial &
n orientation cells

= 1

-,,9, Compute gradients

> 1

g Gamma compression
2 f

£

o}

o

61

Slide adapted from Navneet Dalal



: Deformable Part-based Model (DP b)

Score of filter:
dot product of filter
with HOG features

underneath it

Score of object
hypothesis is sum of
filter scores minus
deformation costs

Image pyramid

HOG feature pyramid

* Multiscale model captures features at two resolutions

Computer Vision Il, Summer’14

62

Slide credit: Pedro Felzenszwalb B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]



Recap: DPM Hypothesis Score

“data term” “spatial prior”

score(po, - ,pﬂ,) = ZF@- . ¢5(H,p¢) — Zdz‘ ' (d%'ga dyf)
=0 T =1 T displacements

filters deformation parameters

score(z) = - V(H, z)

/7 N\

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features
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Slide credit: Pedro Felzenszwalb B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]
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RWTH
Recap: Integral Channel Features

6 Orientation bins Gradient LUV color
magnitude channels

e Generalization of Haar Wavelet idea from Viola-Jones

> Instead of only considering intensities, also take into account
other feature channels (gradient orientations, color, texture).

~ Still efficiently represented as integral images.

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features,
BMVC’09.

B. Leibe

64


http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf
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RWTH
Recap: Integral Channel Features

GEEE -

e Generalize also block computation

> 15t order features:
- Sum of pixels in rectangular region.

input image
(a) first-order
(d) histogram

(c) gen. Haar

> 2M-order features:
- Haar-like difference of sum-over-blocks

» Generalized Haar:
- More complex combinations of weighted rectangles

> Histograms
- Computed by evaluating local sums on quantized images.

B. Leibe
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Recap: VeryFast Detector

e |dea 1: Invert the template scale vs. image scale relation

I _J?M Bl IEDW

1 model, 50 models,
50 image scales 1 image scale

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection
at 100 Frames per Second, CVPR’12.

<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
(&)

66

Slide credit: Rodrigo Benenson B. Leibe


http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf

Recap: VeryFast Detector

e |dea 2: Reduce training time by feature interpolation

5 models, 50 models,
1 image scale 1 image scale

e Shown to be possible for Integral Channel features

- P. Dollar, S. Belongie, Perona. The Fastest Pedestrian Detector
in the West, BMVC 2010.
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Slide adapted from Rodrigo Benenson B. Leibe


http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
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RWTH
Recap: VeryFast Classifier Construction

6 Orientation bins Gradient LUV color
magnitude channels

— - \/_ -

ﬂ(,‘.

score = wy-hy+ wy - hy + twy - hy

e Ensemble of short trees, learned by AdaBoost

Slide credit: Rodrigo Benenson B. Leibe
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
> Kalman filter
> Particle filter

e Multi-Object Tracking
e Articulated Tracking

x)(x;
Y, W

69



Recap: Tracking as Inference

e Inference problem

~ The hidden state consists of the true parameters we care about,
denoted X.

> The measurement is our noisy observation that results from the
underlying state, denoted Y.

> At each time step, state changes (from X, ; to X,) and we get a
new observation Y,.

e Our goal: recover most likely state X, given

» All observations seen so far.
> Knowledge about dynamics of state transitions.

¥ (v ¥ .

B. Leibe
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Slide credit: Kristen Grauman
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Recap: Tracking as Induction

e Base case:

> Assume we have initial prior that predicts state in absence of
any evidence: P(X,)

- At the first frame, correct this given the value of Y =y
e Given corrected estimate for frame ¢:

> Predict for frame t+1

» Correct for frame t+1

ct correct

P
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B. Leibe

Slide credit: Svetlana Lazebnik
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Recap: Prediction and Correction

e Prediction:

P(Xt | Yor -+ yt—l): I P(Xt | Xt—l)P(Xt—l | Yor---s yt—l)dxt—l

N J N\ /
Y e

Dynamics Corrected estimate
model from previous step

e Correction: , ,
Observation Predicted

model estimate

/ > N J%
P(Y, [ X)P(X, | Yore-r Vi)

Py, I XOP(X( ] Yoo Vea JAX,

B. Leibe

P(Xt|yo,...,yt):J.

Slide credit: Svetlana Lazebnik
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Recap: Linear Dynamic Models

e Dynamics model
- State undergoes linear tranformation D, plus Gaussian noise

X, ~ N (DtXt—l’zdt )

e Observation model
» Measurement is linearly transformed state plus Gaussian noise

Y, ~ N(I\/Itxt,zmt)

Slide credit: S. Lazebnik, K. Grauman B. Leibe
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RWNTH
Recap: Constant Velocity Model (1D)

e State vector: position p and velocity v

— (greek letters
X — P: Pe=Pra® (At)vt_l e denote noise
t V, V.=V, +¢ terms)
. |1 At} p, .
X, = D,X,_; +nolise = + noise
0 1]|v,

e Measurement is position only
y, = Mx, +noise =1 O{ Pt

Vi

+ noise

Slide credit: S. Lazebnik, K. Grauman B. Leibe
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RWTH
Recap: Constant Acceleration Model (1D)

e State vector: position p, velocity v, and acceleration a.

I P, | Pi = Py t (At)vt_1 +& (greek letters
denote noise
X =| Vi v, =V, +(Aha, + & terms)
4, | =28 ,+¢
1 At 0 p.,
X, =DxX_+noise=|0 1 At|v,_ [+noise
0 0 1ja,
e Measurement is position only
_ 0 _
y,=Mx +noise=[1 0 0] v, |+noise
B. Leibe a’[

Slide credit: S. Lazebnik, K. Grauman — —
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Recap: General Motion Models

e Assuming we have differential equations for the motion
» E.g. for (undampened) periodic motion of a spring

d2
-
dt
e Substitute variables to transform this into linear system

: p=p  p=P _4°p
CE’ 1 2 dt p3 — dtz
§ e Then we have
E i Py | Dit = Pria ™ (At) Poi g+ € 1 At O]
i X =| Pay 0, = Py F(A) P, ,+E Di=[ 0 1 At
g— | Pai_ D5 = =P +6 -1 0 0_
O
&

B. Leibe




Recap: The Kalman Filter

Know corrfected state from Receive medsurement Know prediction of state,

measurements up to the > Update distribution
current one over current state.

- Predict distribution over
next state. / \

Time update Measurement update
E (“Predict”) (“Correct”)
u=> P(Xt‘y01-°'1yt—1) P(Xt‘yo,...®)
=
=8 Mean ar.ld std. dev. Time advances: t++ Mean and std. dev.
- of predicted state: of corrected state:
8 - - + +
é H; Oy H; Oy
o
S | 77

B. Leibe

Slide credit: Kristen Grauman
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Recap: General Kalman Filter (>1dim)

e What if state vectors have more than one dimension?

PREDICT ¢ ‘ CORRECT

X, = DX

% =Dx{,Df +Z,

K =M MM+, )
“Kalman gain’=--j=mmmmmmmmmeme ! “residyial”

6= Ky M)

Z: :(I _KtMt) ¢

More weight on residual
when measurement error

for derivations,
see F&P Chapter 17.3

Slide credit: Kristen Grauman

B. Leibe

covariance approaches 0.

Less weight on residual as
a priori estimate error
covariance approaches 0.
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Recap: Kalman Filter

e Algorithm summary
> Assumption: linear model

X = Dyxy1+¢&
y: = Mix; + 04
~ Prediction step
x, = Dix/_,
¥, = DX DI +3,
> Correction step
K, = =;MI (M,S; M +%,,,)
X = x; + K (ye — Mix;)
Ej = (I-K:M) X,

B. Leibe
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Recap: Extended Kalman Filter (EKF)

e Algorithm summary
> Nonlinear model
Xt = g(x¢-1)+ &
y: = h(x¢)+0

x; = x; + K¢ (ye—h(x;)) e
22_ — (I — Kth) Et—

> Prediction step with the Jacobians
- _ +
_ X
: X = GELGY +E, G = =
“:’ x szj—l
— > Correction step
c _ _ —1 oh(x
S ox _
g
2
€
O
&

i 80
B. Leibe
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection

e Bayesian Filtering
> Kalman filters
> Particle filters

e Multi-Object Tracking
e Articulated Tracking

81
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Recap: Propagation of General Densities

m

A
plx)

=

plx)

AN

o
-

reactive effect of measurement

Slide credit: Svetlana Lazebnik

i
p(x)

Y

stochastic diffusion

plx)

Y

B. Leibe

82

Figure from Isard & Blake



Recap: Factored Sampling

A
Probability

posterior
density

@ weighted

W

o @ @O .. o State ™

-

e |dea: Represent state distribution non-parametrically
- Prediction: Sample points from prior density for the state, P(X)
- Correction: Weight the samples according to P(Y | X)

P(yt | Xt)P(Xt | Yoi- -, yt—l)
P(yt | Xt)P(Xt | yO""’ yt—l)dxt

P(Xt|yo,...,yt):J.
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B. Leibe Figure from Isard & Blake

Slide credit: Svetlana Lazebnik
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Recap: Particle Filtering

e Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

» Sample space

> Randomly Chosen = Monte Carlo (MC)

~ As the number of samples become very large - the
characterization becomes an equivalent representation
of the true pdf.

Slide adapted from Michael Rubinstein B. Leibe
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RWTH
Recap: Sequential Importance Sampling

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0 Initialize
for i = 1:N
xf; ~ q(xt|Xi_1a yt) Sample from proposal pdf

= - . x)p(xt|xt
G w; = wz_lp(%‘ t)ZZ( i) Update weights
E Q(Xt\Xt_p.Yt)
‘z{ n=mn-+ w;‘; Update norm. factor
= end
I
; for i = 1:N
g. wi = w!/n Normalize weights
o]
5 end 86

Slide adapted from Michael Rubinstein B. Leibe



Recap: Sequential Importance Sampling

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0

Initialize
for : = 1:N

x!t ~ (%X, ve) Sample from proposal pdf
- - - X’ ?‘y{ x?
L wW; = Wy_4 P(y:[x:)p ‘ t 1) Update weights
E (Xt‘xt 1
» n=n+w Update norm. factor
g d For a concrete algorithm,
B en we need to define the
; for i = LN importance density ¢(.|.)!
‘ls . . ° °
2 wy = w; /N Normalize weights
O
1 end 57

Slide adapted from Michael Rubinstein B. Leibe



RWNTH
Recap: SIS Algorithm with Transitional Prior

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0 Initialize
for i = 1:N
x;"é ~ p(Xt\Xi_l) Sample from proposal pdf

<
'g, wy = wy_1p(y:|x}) Update weights
S
fz{ n=n+uw Update norm. factor
§ end T;'ansmonal prior i
i for i = 1I'N q(X¢|x;_1,¥t) = P(X¢|X¢ 1)
g_ wi — wi /n Normalize weights
o]
5 end 88

Slide adapted from Michael Rubinstein B. Leibe
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Recap: Resampling

e Degeneracy problem with SIS
~ After a few iterations, most particles have negligible weights.

~ Large computational effort for updating particles with very small
contribution to p(x, | y,.,)-

e |ldea: Resampling

~ Eliminate particles with low importance weights and increase
the number of particles with high importance weight.

N 1Y
{X;,fwi}.:l — {xi*, —}
‘ N )iz
» The new set is generated by sampling with replacement from
the discrete representation of p(x, | y,,) such that

Pr {X;’g* — X;Z} = w;

89

Slide adapted from Michael Rubinstein B. Leibe
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Recap: Efficient Resampling Approach

e From Arulampalam paper:

ﬁlgollthm 2: Resampling Algorithm
[, wj, )] = RESAMPLE [{x), wf )]

* Inltlallze the CDF: ¢ =0

* FOR ¢ = 2: N,

— Construct CDF: -';:i=-‘.1i-:—1—|-‘w§r.

END FOR

Start at the bottom of the CDF: ¢=1
Draw a starting point: g ~U[0, N7
FOR j = 1: g

— Move along the CDF: wu; —uy +N;1j—1)
— WHILE u; > ¢

# ¢ =4+ 1

_ END WHILE Basic idea: choose one initial

<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

_ nssign sample: XI* =xi small random number; deter-
_ Assign weight: wl = N ministically sample the rest
_ Assign parent: ¥ =i by “crawling” up the cdf.
s END FOR This is O(N)!
B. Leibe

Slide adapted from Robert Collins
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Slide adapted from Michael Rubinstein

Recap: Generic Particle Filter
function [{Xi,wi}il} = PF [{Xi—lvwi—l}j\ilayt}
Apply SIS filtering {{Xi,wz}il} = SIS [{Xi—lawi—l}j\il 7yt}

1
Zi\;(wi)Q

Calculate N g =
if N <Ny,
i Y i
{xiwit, | = RESAMPLE | {x}, i}, |
end

e We can also apply resampling selectively
> Only resample when it is needed, i.e., Neff is too low.
= Avoids drift when there the tracked state is stationary.

B. Leibe
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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT
> Network flow optimization

e Articulated Tracking
» GP body pose estimation
> Pictorial Structures

92
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Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
> Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
» Newly visible objects, or just noise?

3. More than one measurement may match a prediction
> Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions

> Which object shall the measurement be assigned to?
B. Leibe
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Recap: Reducing Ambiguities

e Gating
> Only consider measurements within a certain ®
area around the predicted location. é

= Large gain in efficiency, since only a small ¢

region needs to be searched

e Nearest-Neighbor Filter

> Among the candidates in the gating region, ® o
only take the one closest to the prediction x, ®

Zl(k) _ argminj( () y§k)) (x (kl>_y§k>) °

- Better: the one most Ilkely under a Gaussian prediction model
zl(k) = argmax; N(y, k). ;(akz)a Z(k))
which is equivalent to taklng the Mahalanobis distance

z = argmin;(x,1 — y;) 2] (Xp1 — ¥;)
B. Leibe
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Recap: Track-Splitting Filter

e |dea (1)
» Instead of assigning the measurement that is .z12
currently closest, as in the NN algorithm, 02& )
select the sequence of measurements : Z§3)

that minimizes the total Mahalanobis distance

. L@y g @
over some interval! 1 2

> Form a track tree for the different association decisions

> Modified log-likelihood provides the merit of a particular
node in the track tree.

» Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

e Problem

~ The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.

B. Leibe
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Recap: Pruning Strategies

e In order to keep this feasible, need to apply pruning
> Deleting unlikely tracks

- May be accomplished by comparing the modified log-likelihood A (%),
which has a x? distribution with kn_ degrees of freedom, with a
threshold « (set according to 2 distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

= Use sliding window or exponential decay term.

~ Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

~ Only keeping the most likely [V tracks
- Rank tracks based on their modified log-likelihood.

96
B. Leibe



Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

° ° ° Hypotheses _at time k-1 dela Hypot.hesmk at time k
e Multi-Object Tracking : ;
> Data association i iy
For Zech Hypottisis 6771 i
> MHT

Hypothesis Generation|

> Network flow optimization

e Articulated Tracking

» GP body pose estimation
> Pictorial Structures
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Image source: [Cox, 1JCV’93]
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Recap: Multi-Hypothesis Tracking (MHT)

e |deas

- Instead of forming a track Hyposhese s time k- Hypotheses o time k
tree, keep a set of hypotheses ]
that generate child hypotheses PP

based on the associations. Y (pruning, merging)

o R For Each Hypothesis 6:‘_1 ]
> Enforce exclusion constraints Generate Predictions

between tracks and measure- Hypothesis Generation]
ments in the assighment. ]
< (k)

> Integrate track generation into Prodictas Features Hypothesis Matriz
the assignment process. Y (*)

QObserved Fealures
- After hypothesis generation, |
merge and prune the current
hypothesis set.

I 3

delay [«

Matching

Feature Extraction

Raw Sensor Dala

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.

B. Leibe
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http://dx.doi.org/10.1109/TAC.1979.1102177
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Recap: Hypothesis Generation

e Create hypothesis matrix of the feasible associations

X1 XoXfqXnt - :-\. V4

1 0 1 1 Y1 R4 "Y2\;\
o_ |1 1 1 1 ry®e 0 ys
1011 1| ys ‘S s X
0 0 1 1| Ya X1/~= 7 X2

e Interpretation
» Columns represent tracked objects, rows encode measurements

- A non-zero element at matrix position (7,j) denotes that
measurement y, is contained in the validation region of track x..

- Extra column x, for association as false alarm.
» Extra column x_, for association as new track.

> Turn this hypothesis matrix

99
B. Leibe



Recap: Creating Assignments

A ; X, X, X fq X,
Y 0 0 1 0
Y, 1 0 0 0
Y3 0 1 0 0
Y4 0 0 0 1

e Impose constraints
» A measurement can originate from only one object.
= Any row has only a single non-zero value.

> An object can have at most one associated measurement per
time step.
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= Any column has only a single non-zero value, except for x;,, x,,
100
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Recap: Calculating Hypothesis Probabilities

e Probabilistic formulation
~ It is straightforward to enumerate all possible assignments.

- However, we also need to calculate the probability of each child
hypothesis.

> This is done recursively:

(k) v (k)Y (k) 0
. pQPIY®) = p(zF, ok Dy ®)
= Bayes k)| 7(F) (k1) (k) (k—1)
= np(Y ()|Z (3) )p(Zj an(j) )
‘;—;. k k—1 k k—1 k—1
= = (Y™ Z3, 05 (27 19,5 e ")
9 N J \ J \
%’ / Y Y Y
T Normalization Measurement Prob. of Prob. of
'é_ factor likelihood assighment set  parent
€
O
O

101
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Recap: Measurement Likelihood

e Use KF prediction

> Assume that a measurement y(k) associated to a track X has a

Gaussian pdf centered around the measurement prediction ng)
with innovation covariance 2( ),

» Further assume that the pdf of a measurement belonging to a
new track or false alarm is uniform in the observation volume W

(the sensor’s field-of-view) with probability 1V -1,

> Thus, the measurement likelihood can be expressed as

M;,
p(Y(k)‘Z§k)aQ(k71)> _ HN( (k). ijz(k)) —(1-:)

p(J)

’L

M,
— W WNratNaew) HN( (k). X, Z(k))

<
-
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

102

B. Leibe



Recap: Probability of an Assignment Set
(2" 10007)

e Composed of three terms

1. Probability of the number of tracks N, N;,;, N,
- Assumption 1: N, , follows a binomial distribution

k—1 N det - et
P(Naerl27”) = (Ndet>p2vet (1 = paeq) N~ Neet

where N is the number of tracks in the parent hypothesis

- Assumption 2: N, and N, both follow a Poisson distribution

new
with expected number of events A, ,Wand A, W

_ N -
P(Ndet,Nfaz,wa!Q(k 1)) _ (Nd t ) p%ﬁ(l — Pey) N Naet)

p(J)

'/-L(Nfalg /\falW) ) M(Nnewg /\new W)
103
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RWTH
Recap: Probability of an Assignment Set

2. Probability of a specific assignment of measurements
- Such that M, = N,,, + Ny, + N, holds.

- This is determined as 1 over the number of combinations
M, My, — Nget My — Nget — Ny
Ndet Nfal Nnew
3. Probability of a specific assignment of tracks

- Given that a track can be either detected or not detected.
- This is determined as 1 over the number of assignments

N'! NNdet)
(N — Ndet)! Ndet

= When combining the different parts, many terms cancel out!
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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT
> Network flow optimization

e Articulated Tracking
» GP body pose estimation
> Pictorial Structures
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RWTH
Recap: Linear Assignment Formulation

e Form a matrix of pairwise similarity scores

e Example: Similarity based on motion prediction

~ Predict motion for each trajectory and assign scores for each
measurement based on inverse (Mahalanobis) distance, such

that closer measurements get higher scores. ail  ai2

> Choose at most one match in each row and column to maximize
sum of scores

< 1
e trackl JIr- . 2
: o 3
= 4 4
m /7

= [ 5
S X

< A

o track2

=

(o

£

(o)

o

106
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RWTH
Recap: Linear Assignment Problem

e Formal definition

N M
> Maximize E E WijZij
i=1 j=1

~

subject to - zis=1:1=1,2.....N
J 23_1 " ’ T Those constraints

> i1%i=1;7=1,2...,M > ensure that Z is a
ermutation matrix
Zij € {O, ].} P

./

> The permutation matrix constraint ensures that we can only
match up one object from each row and column.

N M
> Note: Alternatively, we can minimize :
arg 111 E E Cij<ij

cost rather than maximizing weights. 25
i=1 j=1
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Recap: Optimal Solution

e Greedy Algorithm

~ Easy to program, quick to run, and yields “pretty good”
solutions in practice.

~ But it often does not yield the optimal solution

e Hungarian Algorithm

» There is an algorithm called Kuhn-Munkres or “Hungarian”
algorithm specifically developed to efficiently solve the linear
assignment problem.

» Reduces assignment problem to bipartite graph matching.
- When starting from an Nx N matrix, it runs in O(N3).
= If you need LAP, you should use it.
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Recap: Min-Cost Flow

. @
O
-3
0 2
@ e @
5 -3
v @
e Conversion into flow graph

- Transform weights into costs = Q= W
> Add source/sink nodes with O cost.

T
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- Directed edges with a capacity of 1.
Slide credit: Robert Collins B. Leibe
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Recap: Min-Cost Flow
@ o
[+3] _° -2 0 __ [-3]
®© © o o

4

5
1

e Conversion into flow graph
> Pump N units of flow from source to sink.

- Internal nodes pass on flow (2. flow in = 2. flow out).
= Find the optimal paths along which to ship the flow.

Slide credit: Robert Collins B. Leibe
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Recap: Min-Cost Flow

[-3]

e Conversion into flow graph
> Pump N units of flow from source to sink.

- Internal nodes pass on flow (2. flow in = 2. flow out).
= Find the optimal paths along which to ship the flow.

Slide credit: Robert Collins B. Leibe
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RWTH/A/
Recap: Using Network Flow for Tracking

e Complication 1
> Tracks can start later than frame1 (and end earlier than frame4)
= Connect the source and sink nodes to all intermediate nodes.

<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
(&)

112

Slide credit: Robert Collins B. Leibe



Recap: Using Network Flow for Tracking

e Complication 2
> Trivial solution: zero cost flow!
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Recap: Network Flow Approach

Solution: Divide
each detection
into 2 nodes

(s,u;)) & :v;, 1)

(u; ‘-’f). (Vi 1) )

Observation edges Transition edges Enter/exit edges

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking
using Network Flows, CYPR’08.
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vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf

Recap: Min-Cost Formulation

e Objective Function
Tx = arg;nin Z Cinilini+ Z Ci,out Ji,0ut

+2.Cijfi;+2.Cifi
1,7 i

<
i34l * subject to
= .
g > Flow conservation at all nodes
(/] .
= fini+ Y fii=Ffi = fouri+ Y fij Vi
S J j
7]
; - Edge capacities
H fi <1
=
S
115
B. Leibe
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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT
> Network flow optimization

e Articulated Tracking

> GP body pose estimation (}
> Pictorial Structures .
116

Image sources: Tomasz Svoboda, Deva Ramanan
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RWTH
Recap: Basic Pose Estimation Approaches

e Global methods k
~ Entire body configuration is treated as a point <\ _
in some high-dimensional space. ) ) B

- Observations are also global feature vectors.

= View of pose estimation as a high-dimensional
regression problem.

= Often in a subspace of “typical” motions...

e Part-based methods

~ Body configuration is modeled as an assembly
of movable parts with kinematic constraints.

» Local search for part configurations that
provide a good explanation for the observed |
appearance under the kinematic constraints. % / < X

= View of pose estimation as probabilistic I
inference in a dynamic Graphical Model. i

image sources: T. Jaeggli, D. Ramanan, T. Svoboda
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RWTH
Recap: Advantage of Silhouette Data

e Synthetic training data generation possible!
» Create sequences of ,,Pose + Silhouette* pairs
~ Poses recorded with Mocap, used to animate 3D model
~ Silhouette via 3D rendering pipeline

Orientation (o) \\

N

=

:

> Motion

7]

— Capture > —_—
S

D

>

o

5

Q

£

S Pose Data (p) 3D Rendering Silhouettes (s) g

Slide adapted from Stefan Gammeter B. Leibe



Recap: Latent Variable Models

To A

—

-

1 yi
Low-dim. latent space (X) Joint angle pose space (V)

e Joint angle pose space is huge!
> Only a small portion contains valid body poses.

= Restrict estimation to the subspace of valid poses for the task
> Latent variable models: PCA, FA, GPLVM, etc.
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RWTH
Recap: Articulated Motion in Latent Space

e Regressors need to be learned from training data.

<

e walking cycles have one additional DOF encode
E main (periodic) DOF ,walking style“
=)

7]

=8 ¢ Regression from latent space to

c

E - Pose —> p(pose | z)

; - Silhouette p(silhouette | z)

5

Q

£

O

&)
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Recap: Learning a Generative Mapping

Body Pose _ - ==~ _Learn dim. red. (LLE)

-~ ~)

X : Body Pose p x : Body Pose
(high dim.) reconstruct |  (low dim.) “
pose
.g dynamic pri
o
£
3 v
= 2
s + | likelihood
=2 8’,,v
n
< Y : Image e > y : Appearance
(o] t BPCA
® (high dim.) ':ro]ec ton ( Descriptor: (low dim.)
>
1 5
..g Appearance
Q
S
o
&

T. Jaeggli, E. Koller-Meier, L. Van Gool, "Learning Generative Models for
Monocular Body Pose Estimation”, ACCV 2007. 121

Slide credit: Tobias Jaeggli



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf

wa'%‘?iil IEN
Recap: Gaussian Process Regression

i
» |

e “Regular” regression: y = f(x)

W va T
y Al - PR *\\ f(x)
c:.‘ ] .: ° é o " ) o ///// /
o o . : . \\ / . . ////

X
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Recap: GP Prediction w/ Noisy Observations

e Calculation of posterior:

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£, X,, X, t ~N(f,cov[f]) £, = E[f|X,X,,t]

f, = K(X,,X)(K(X,X)+02I) 't
covlf,] = K(X,,X,)— K(X,,X) (K(X,X)+02I)" K(X, X,)

= This is the key result that defines Gaussian process regression!

- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
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Recap: Articulated Multi-Person Tracking

1...N
‘Multi-Person Tracker "\ (Articulated Tracker Tracklet;
Top-down ,ﬁ]%
Prior h\
Human Multi-Person Z 1
[T F— : e :
e Detection Tracking | ‘fk
. Body ,| Body Pose L\
Segmentation Estimation "“;
L VRN Shape prediction Body PO%)

e |dea: Only perform articulated tracking where it’s easy!
e Multi-person tracking
~ Solves hard data association problem

e Articulated tracking

> Only on individual “tracklets” between occlusions
> GP regression on full-body pose
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Outline of This Lecture

e Single-Object Tracking

e Bayesian Filtering
> Kalman Filters, EKF
> Particle Filters

e Multi-Object Tracking
> Data association
> MHT
> Network flow optimization

e Articulated Tracking
» GP body pose estimation
> Pictorial Structures
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Recap: Pictorial Structures

e Each body part one variable node
» Torso, head, etc. (11 total)

e Each variable represented as tupel
> E.8., Y00 = (2,,0,s) With
> (x,y) image coordinates
> 0 rotation of the part

> S scale

e Discretize label space y into L states
- E.g., size of L for y = (x,y,0,s)
> L =125 x 125 x 8 x 4 ~ 500’000
= Efficient search needed to make this feasible!

P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,
IJCV, Vol. 61(1), 2005.

Slide adapted from Bernt Schiele
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http://cs.brown.edu/~pff/papers/blobrecJ.pdf

Recap: Model Components

e Body is represented as flexible combination of parts

posterior over body poses

\
p(L|E) x p(E|L)p(L)

7 ~
likelihood of observations prior on body poses
[ - likelihood |[ A
orientation K of part N estimated part

AT T
ey gt

pose posteriors
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Recap: Kinematic Tree Prior

e Notation
> (from [Andriluka et al., IJCV’12])
» Body configuration

L = {l07lla"'7lN}
- Each body part: [, = (z,, y,, 0., s,)

= :

% e Prior

€

: pllo) [ »lty)

:, (4,5)€G

:g - with p(l,) assumed uniform l,

; > with p(l; | [;) modeled using a Gaussian in the - |
‘g’_ transformed joint space o 1
€

3 p(lilly) = N (Tyi(ls) — Tz (1) g Zi)
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Recap: Likelihood Model

e Assumption

» Evidence (image features) for each part
independent of all other parts

p(E|L) = Hp E|l;)

2 * Many variants proposed in the past

é’ - Based on rectangular fg regions

= - Based on color/edge models

i - Based on AdaBoost classifiers

5

> person . oh Deva
o model model  model model
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Slide credit: Bernt Schiele B. Leibe



Pictorial Structures

e Potentials (= energies = factors)
> Unaries for each body part (torso, head, ...)
~ Pairwise between connected body parts

e Body pose estimation
~ Find most likely part location
= Sum-product algorithm (marginals)
> Find the best overall configuration
= Max-sum algorithm (MAP estimate)

e Complexity
» Let k£ be the number of body parts (e.g., £ =10)
> L is the size of the label space (e.g., several 100k)
.~ Max-sum algorithm in general: O(k L?)

<
-
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

- For specific pairwise potentials: O(k L)
B. Leibe
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Slide adapted from Bernt Schiele



Recap: Efficient Inference

e Assume d to have quadratic form
d(ly,lo) = ||l = Ti(lo)|]?

e Then min (mg(lo) + m1(ly) +d(lq,1p))

lo.l1

= min (mg(lg) + min (mq (1) + d({, ZO)))

lo [

~ with the second term a generalized distance transform (gDT).
» Algorithms exist to compute gDT efficiently.

> Thus = n}in (mo(lo) + D15, (T1(1o)))

with DT, (T\(ly)) = n}in {mq(ly) +d(l1,1p)}

1
= Finding the best part configuration can be done sequentially,

rather than simultaneously!
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UNIVERSIT
Recap: Example Part Model of Motorbikes ‘

e Model

» 2 parts (use both wheels),
simple translation between
them given by (x,y) position

=
o
s
S
e

=
—t

T~
=t
N—

1. Part unaries (log prob)
— my(ly) and my (1)

2. Distance transform of m(l;)

3. Simply find minimum of sum

H}(i,n (mo(lo) + DT, (T1(lo)))
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Slide credit: Bernt Schiele B. Leibe Example from Dan Huttenlocher



RWTHAACHEN
UNIVERSITY

Any Questions?

So what can you do with all of this?
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Computer Vision Il, Summer’14




RWTH
Mobile Tracking in Densely Populated Settings

. ’ ) 9 ’, £ 5 e 2 -
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(Tracking based on stereo 'depth'only, no detector verification) 4
[D. Mitzel, B. Leibe, ECCV’12]
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Computer Vision Il, Summer’14

RWTH
Classifying Interactions with Objects

pull side right
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Articulated Multi-Person Tracking

e Multi-Person tracking
» Recover trajectories and solve data association

e Articulated Tracking
» Estimate detailed body pose for each tracked person
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[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]




RWNTH
Semantic 2D-3D Scene Segmentation

145
B. Leibe [G. Floros, B. Leibe, CVPR’12]



RWTH
Integrated 3D Point Cloud Labels
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B. Leibe [G. Floros, B. Leibe, CVPR’12]



RO INVERSITY
Any More Questions?

Good luck for the exam!
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