Outline of This Lecture

¢ Single-Object Tracking
Computer Vision Il - Lecture 14

¢ Bayesian Filtering
» Kalman Filters, EKF
» Particle Filters

Articulated Tracking Il

¢ Multi-Object Tracking
» Data association
. MHT, (JPDAF, MCMCDA)
» Network flow optimization
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o Articulated Tracking
» GP body pose estimation
» (Model-based tracking, AAMs)
» Pictorial Structures
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Topics of This Lecture Basic Classes of Approaches

¢ Global methods
» Entire body configuration is treated as a point i
in some high-dimensional space. T
.~ Observations are also global feature vectors. !

¢ Body Pose Estimation as High-Dimensional Regression X e o A
= View of pose estimation as a high-dimensional E

» Representations

» Training data generation

» Latent variable space

» Learning a mapping between pose and appearance

regression problem.
= Often in a subspace of “typical” motions...

¢ Part-based methods
~ Body configuration is modeled as an assembly
of movable parts with kinematic constraints.
» Local search for part configurations that
provide a good explanation for the observed
appearance under the kinematic constraints.
= View of pose estimation as probabilistic
inference in a dynamic Graphical Model.

im: rces: T, i, D. Ramanan, T, Sv¢

Computer Vision I, Summer’14
Computer Vision Il, Summer’14

RWTHZACHET]

Recap: Advantage of Silhouette Data Recap: Latent Variable Models

¢ Synthetic training data generation possible!
» Create sequences of ,,Pose + Silhouette“ pairs
» Poses recorded with Mocap, used to animate 3D model
» Silhouette via 3D rendering pipeline

Orientation (®) \

: s

E E 1 U1

§ ?:;E:e . § Low-dim. latent space (X) Joint angle pose space (¥)

= > =| ¢ Joint angle pose space is huge!

2 'E » Only a small portion contains valid body poses.

3 3 = Restrict estimation to the subspace of valid poses for the task

2 2 » Latent variable models: PCA, FA, GPLVM, etc.

§ Pose Data (p) 3D Rendering Silhouettes (s) § .
ide adapted from Stefan B. Leibe B. Leibe image source: R, Urtasur]
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Recap: Articulated Motion in Latent Space

walking cycles have one
main (periodic) DOF

additional DOF encode
»walking style“

* Regression from latent space to
. Pose —> p(pose | z)

~ Silhouette p(silhouette | z)
¢ Regressors need to be learned from training data.

ide adapted from Stefan G B. Leibe
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Recap: Gaussian Process Regression

e “Regular” regression: 1 = [|

_ flx)

B. Leibe

ide credit: Stefan G
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Recap: Articulated Multi-Person Tracking
1..N
(Multi-Person Tracker (Articulated Tracker Trocklet;
Top-down F'.s
Camera Rig
Segmentation
Shape prediction Body Pose/

¢ Idea: Only perform articulated tracking where it’s easy!
e Multi-person tracking

» Solves hard data association problem
¢ Articulated tracking

~ Only on individual “tracklets” between occlusions

» GP regression on full-body pose
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Recap: Learning a Generative Mapping
Body Pose _ - ==~ _Learndim. red. (LLE)
e S<
X : Body Pose X : Body Pose
(high dim.) reconstruct | (low dim.)
pose
,E dynamic pri
g
E
¢
% | likelihood
g
&
Y : Image % y : Appearance
M Descriptor: (low dim.)
Appearance

T. Jaeggli, E. Koller-Meier, L. Van Gool, “"Learning Generative Models for
Monocular Body Pose Estimation”, ACCV 2007. 8

ide credit: Tobias Jaeggli
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Recap: GP Prediction w/ Noisy Observations

¢ Calculation of posterior:

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

f.|X., X, t ~ N(f,,cov[f,]) f, = E[f.|X,X,,t]

» with:
1

£, = K(X,X)(K(X,X)+oI) "'t

covlf] = K(X,,X.) - K(X., X) (K(X, X)+o21) "

KX, X,)
= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
10

ide credit- Berpt Schiele B. Leibe
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Topics of This Lecture

e Pictorial Structures
» Model components
» Prior
» Likelihood Model

¢ Recap: Inference
» Sum-Product algorithm
» Max-Sum algorithm

« Efficient Inference in Pictorial Structures
» Generalized Distance Transform
~ Effect on Computation

¢ Results



ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf

Today: Pictorial Structures

¢ Pose estimation as inference in a graphical model

» [Fischler & Elschlaeger, 1973; Felzenszwalb & Huttenlocher, 00]
13
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ide adapted from Rernt Schiele

¢ Joint probability 1

. Can be expressed as product of factors: p(x) = Z Hfs (xs)

» Factor graphs make this explicit through separate factor nodes.
¢ Converting a directed polytree

» Conversion to undirected tree creates loops due to moralization!

» Conversion to a factor graph again results in a tree!
B. Leibe
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Recap: Factor Graphs
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Jmage source: C, Bichop, 2001
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Pictorial Structures: Model Components

¢ Body is represented as flexible combination of parts
posterior over body poses

v
P(LIE) o< p(E[L)p(L)
A ~

likelihood of observations prior on body poses

likelihood

orientation K

estimated part
pose posteriors

Local
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ide adapted from Bernt Schiele B. Leibe
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Pictorial Structures

¢ Each body part one variable node
» Torso, head, etc. (11 total)

¢ Each variable represented as tupel
> E.8., Yoo = (2,y,0,s) With
» (x,y) image coordinates
» 0 rotation of the part
» Sscale

¢ Discretize label space y into L states
» E.g., size of L for y = (z,y,0,s)
» L =125 x 125 x 8 x 4 ~ 500°000
= Efficient search needed to make this feasible!

P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,
1JCV, Vol. 61(1), 2005.

ide adapted from Rernt Schiele

B. Leibe

Two Model Components

e Prior p(L)
» Models kinematic dependencies between
body parts
» Tree-structured prior (constraints b/w
body parts) lead to efficient inference
» Generalized distance transform provide
additional efficiency

¢ Likelihood of body parts p(E | L)
» Models possible appearances of body parts
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» Substantial improvements in recent years (orym{in) b
in appearance modeling and detection e 2
¢ Finding body parts = Pose estimation D
16
ide adapted from Bernt Schiele B. Leibe
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Pictorial Structures: Model Components

¢ Body is represented as flexible combination of parts
posterior over body poses

v
P(LIE) o< p(E[L)p(L)
A ~

likelihood of observations prior on body poses

likelihood 0
estimated part
pose  posteriors

orientation K

ide adapted from Bernt Schiele B. Leibe
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Human Body Pose Models - Prior p(L)

e E.g., [Felzenszwalb & Huttenlocher, 1JCV’05]

: O, ©
/{ﬁ“ °°®°° (el .
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¢ E.g., [Andriluka et al., IJCV’12]

Computer Vision Il, Summer’14

ide credit: Bernt Schiele B. Leibe

Kinematic Tree Prior

¢ Notation
» (from [Andriluka et al., IJCV’12])
» Body configuration

L={lpIi,....Ix}

» with p(l; | I;) modeled using a Gaussian

21

ide credit: Bernt Schiele B. Leibe

Pictorial Structures

¢ Potentials (= energies = factors)
» Unaries for each body part (torso, head, ...
» Pairwise between connected body parts

¢ Body pose estimation
» Find most likely part location
= Sum-product algorithm (marginals)
» Find the best overall configuration
= Max-sum algorithm (MAP estimate)

¢ Complexity
» Let k be the number of body parts (e.g., k£ =10)
» L is the size of the label space (e.g., several 100k)
» Max-sum algorithm in general: O(k L?)
» For specific pairwise potentials: O(k L)

ide adapted from Bernt Schiele B. Lebe
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Kinematic Tree Prior

* Gaussian assumption for p(l; | ;)
» This may seem like a significant limitation.

» E.g., distribution of forearm configuration given
the upper arm is semi-circular, rather than

I *

o e Gaussian!

» Each body part: I, = (z;, y;, 0;, s .

- VP 0= @y ) N Solution [Felzenszwalb & Huttenlocher, 1JCV’05]
“:1 o o ‘,:, » Transform part configuration /; into coordinate system of the
E e Prior E joint, where the distribution is captured well by a Gaussian:
E E - o

@ _ . 7] z; + 8;d2 cos 0; — s;d?" sin 6;

= P =il H plilt) = yi + Sid;i sin 0; + Sid]yi cos0;

§ (i.4)e6 s Tii(l;) = z P Y

2 Iz} i

; - with p(l,) assumed uniform E i

2 2

£ =

o o

) o

. with @i — dff position of the joint between parts i and j,
'
y
B. Leibe

(/6/11

represented in the coordinate system of part ziz

Kinematic Tree Prior

¢ Represent pairwise part relations

Kinematic Tree Prior

e Prior parameters {7};, ¥, ;}
» Learned using maximum likelihood

Mean pose Several independent samples
Ti;(l5) |nui,j= zf:ﬂ) - 4 .
z : :
w . w
g Part locations Transformed 2 - .
£ relative to joint part locations £ ol -
3 = 5 3 =
12 2
@ o o e .
= = sy = = =
s kb * P _f?y o 5 w i
‘B R EY B .
s -} 1 o 2 a s e L
= 1w b 1) = -
£ . » ® 2 " .
=3 0 20| = -t
E - M £ o -
o % 0 ERE-E i = » o - ° . - e e
ide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe
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Pictorial Structures: Model Components ‘

¢ Body is represented as flexible combination of parts
posterior over body poses
¥
p(L|E) oc p(E[L)p(L)
7 ~

likelihood of observations prior on body poses

likelihood N
of pan N estimated part
posteriors|

orientation K
pose

Local
eatu res

. 25
ide credit: Bernt Schiele B. Leibe

Likelihood Model

¢ Many variants have been proposed over the years...

» [Felzenszwalb, IJCV’05] a
AL

- Modeled using rectangular
parts based on fg/bg
probabilities ﬁ’

— N,: #fg pixels inside rectangle

Computer Vision Il, Summer’14

Likelihood Model

¢ Assumption

» Evidence (image features) for each part
independent of all other parts

N
=[[»ElL)

i=0

p(E|L)

¢ The assumption is clearly not correct, but
» Allows efficient computation
» Works rather well in practice

» Training data for different body parts should cover
“all” appearances

26

ide credit: Rernt Schiele B. Lebe

Likelihood Model

¢ Many variants have been proposed over the years...
» [Felzenszwalb, IJCV’05]
» [Ramanan, PAMI’07]

- Learn person-specific body part
appearance models by clustering
- Initially only color models

ide adapted from Rernt Schiele

— A, size of rectangle E B I[.Sli::g’;):;ended by edge models
— N,: #fg pixels inside border A 2
— A,: size of border area §
—t : #pixels in image i‘ e
- 2 == B ray
- Part likelihood R o . % Edge model ] hl 1] tmodel i;‘i I:-.I I-h.l
Ay =1 N —=Na =i o ’ ——
PUEL) = g (1= g Mgl (1 g+~ )0.50 A 3 Npsoel ] TR
g 111 = -
27 & 28
B. Leibe B. Leibe
m \Al m \Al
0 . k T . . . . k T
Likelihood Model Likelihood Models - Part Likelihoods
¢ Many variants have been proposed over the years... Input image Head Torso Upper leg
)
» [Felzenszwalb, IJCV’05] [Ramanan,
» [Ramanan, PAMI’07] NIPS’06]

» [Andriluka, 1JCV’12]

- Boosted classifiers based on
local feature descriptors
(e.g., Shape context, SIFT)

- Part likelihood derived from Boosting score

Decision stump weight Decision stump output

\ /
(2:: il (eil;))
max| —e————: %0
E, Qi t
Small constant to deal
with partial occlusions
29

AENL) =
e

Part location

B. Leibe
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[Andriluka,
1Jcv’12]

B. Leibe

ide credit: Rerpt Schiele




Topics of This Lecture

e Recap: Inference
» Sum-Product algorithm
» Max-Sum algorithm

Computer Vision Il, Summer’14

Recap: Sum-Product Algorithm

¢ Two kinds of messages

» Message from factor node to variable nodes:
- Sum of factor contributions

Hf,—a (z) = Z Fﬁ(zv Xs)
X,

=S £ TT e, )
Xs

mene(fs)\z

(e, X,)

» Message from variable node to factor node:
- Product of incoming messages

tanor@m) = [ e (@m)
lene(zm)\ fs Tm

= Simple propagation scheme.

Computer Vision I, Summer’14
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B. Leibe
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Recap: Sum-Product Algorithm

¢ Objectives
» Efficient, exact inference algorithm for finding marginals.

¢ Procedure:

» Pick an arbitrary node as root.

» Compute and propagate messages from the leaf nodes to the
root, storing received messages at every node.
Compute and propagate messages from the root to the leaf
nodes, storing received messages at every node.
Compute the product of received messages at each node for
which the marginal is required, and normalize if necessary.

p(@) o< [ ] . oa(@)

sEne()

v

v

¢ Computational effort
» Total number of messages = 2 - number of graph edges.

ide adapted from Chris Bishop B. Lebe
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Recap: Sum-Product from Leaves to Root

Message definitions:

Bf—a(T) = Zfs(xs) H Mt £ (Tm)

X, méne(fs)\z

T1 #:xm%f,(zm) = H/*szaa:m(zm)
lene(zm)\fs

Hrale) < J(x)

]

() =1
—_—

x

34

Jmage source: C, Bichop, 2001

B. Leibe
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Recap: Sum-Product from Root to Leaves

Message definitions:
Bfa(T) = Zfs(xs) H Mt £ (Tm)
Xs meéne(f.)\x

T1 #:xm%f,(zm) = H/*szaa:m(zm)
lene(zm)\fs

Hr ) < J(x)

() =1
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B. Leibe Jmage source: C, Bichop, 2001
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Recap: Max-Sum Algorithm

¢ Objective: an efficient algorithm for finding
» Value x™#* that maximises p(x);
» Value of p(x™).
= Application of dynamic programming in graphical models.

¢ Key ideas
» We are interested in the maximum value of the joint distribution
p(x™*) = max p(x)
X
= Maximize the product p(x).
» For numerical reasons, use the logarithm.
In (rna‘x p(x)) = max In p(x).
x x

= Maximize the sum (of log-probabilities).

ide adapted from Chris Bishop B. Leibe
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Recap: Max-Sum Algorithm

¢ Initialization (leaf nodes)
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o gla) =0 pf—pla) =1In fx)
¢ Recursion
» Messages
ff () ;,1.1,‘,‘?.“‘;(4, [ll] faxy,.. )+ Z }1;‘“’7I(.?.'m):|
mene( f)\x
pemp(@) = 3 ipiale)
lene(z)\ f
» For each node, keep a record of which values of the variables
gave rise to the maximum state:
@(x) = argmax |Inf(x,o,...,25n)+ Z iz —f(Tm)
Freelat mene( f.)\x
37
ide adapted from Chric Bishop B. Leibe
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Topics of This Lecture
¢ Efficient Inference in Pictorial Structures
» Generalized Distance Transform
» Effect on Computation
RWTHCHEN
Efficient Inference
¢ Assume d to have quadratic form
Al ly) = HJ'J —T1(fo)] ?
e Then min (mq(ly) +my (1)) +d(l. 1))
lo.ls
= 11}111 (mu[u’\.] + 11{1111(1::1(1'\ )+ fi’(i’].!‘ﬂ]))
o 1
» with the second term a generalized distance transform (gDT).
» Algorithms exist to compute gDT efficiently.
. Thus = 11{1'111(::1‘1(!..) + DT, (Ti(lo)))
= Finding the best part configuration can be done sequentially,
rather than simultaneously!
ide credit: Berpt Schiele B. Leibe “

Recap: Max-Sum Algorithm

¢ Termination (root node)
» Score of maximal configuration

prmax = m.?x { Z s, ‘;(‘T‘J]
scnelx)
» Value of root node variable giving rise to that maximum

™ = argmax |: Z ,ufvgx(,r):|
r

sene(r)
» Back-track to get the remaining 0 0
variable values

I (g 0

n—1 =

Computer Vision Il, Summer’14

B. Leibe

ide adapted from Chris Rishap

Efficient Inference

¢ Best location given by MAP

N
mzlxp(LU;') = m]z}x ].1 (pllillo)ple:|l:))

N

= mguz (=Inp(li|lo) = Inple|l))

i=0

~ Consider case of 2 parts
1}111{n (= Inplen)lo) — Inpler|li) — Inp(hi|l))
0.1

» Rename things

= |f1|ii11 (ma(ln) +mq(ly) +d(ily, 1))
0.l

Computer Vision Il, Summer’14

ide credit: Berpt Schiele B. Leibe
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Distance Transform

¢ Given points p € Pon a grid (e.g., image) G
~ Distance Transform associates to each location z € G the
distance to the nearest point p € P

DTp(x) = min{d(z, p)}
pEF
» or equivalent

S 0
DTp(x) = min {d(z.0) + 1(0)} uq;:{w

* Example

d(z,q) = |z —q|
DTp(z) = min {|z — g| + 1(g)}
qeG
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ide credit: Bernt Schiele B. Leibe
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Generalized Distance Transform

¢ Replace binary function 1(g) with general function f(q)
DT¢(x) = min {d(x.q) + f(q)}
qeEG

» We can assign “soft membership of all grid elements to P.

Example: Part Model of Motorbikes

¢ Model
» 2 parts (use both wheels),
simple translation between
them given by (x,y) position

> is sampled on the entire grid G. mo(lo)
@) P g 1. Part unaries (log prob) (
= bt = my(ly) and m, (I,)
&Y ¢ Inour case 5
£ £
E - f corresponds to m;. E 2. Distance transform of m, (1)
2 . Distance corresponds to (.7} = ||l — T (1y)[|* 2
= = - ) - DT, (T1(lo))
S o 3. Simply find minimum of sum
o . 0
s ly)) = 1) +d(ly, ] s
E DT, (T(1y)) an {my(ly) +d(ly, 1y)} E min (mo(lo) + DTy, (T3 (o))
El 5 lo
o o
= 2
o o
o o
43 ) 44
ide credit: Bernt Schiele 8. Leibe ide credit: Bernt Schiele B. Lebe Example from Dan Huttenlocher
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Topics of This Lecture Results
e Tracking and interpreting detailed body motion.
by g
Z 5
£ £
£ £
3 =3
2] 2]
e =
2 k]
7} 7}
=| * Results =
g § D. Ramanan, D.A. Forsyth, A. Zisserman. Tracking People by Learning
E. g- their Appearance, PAMI 2007.
38 38
* B. Leibe [D. Ramanan. D.Forsyth, PAMI’Q7]
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