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Course Outline

e Single-Object Tracking
e Bayesian Filtering
> Kalman filters

> Particle filters
> Case studies

e Multi-Object Tracking
> Introduction
- MHT, JPDAF
> Network Flow Optimization

e Articulated Tracking
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Topics of This Lecture

e Recap: Track-Splitting Filter
> Motivation
> Ambiguities

e Multi-Hypothesis Tracking (MHT)

> Basic idea

> Hypothesis Generation
> Assignment

> Measurement Likelihood
> Practical considerations
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RWTH
Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
> Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
» Newly visible objects, or just noise?

3. More than one measurement may match a prediction
> Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions

> Which object shall the measurement be assigned to?
B. Leibe
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Let’s Formalize This

e Multi-Object Tracking problem

~ We represent a track by a state vector x, e.g.,
T
X = [il?, Y, Ua:avy]
> As the track evolves, we denote its state by the time index k:

(k) _ {xw, Y8 k) vg’”] g

~ At each time step, we get a set of observations (measurements)

> We now need to make the data association between tracks
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{ng)a e :Xg\lrﬂ,z} and observations{ygk), e ,yg\’;i }:
Zl( g =g iff y§k) is associated with xl(k)
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Recap: Reducing Ambiguities

e Gating
> Only consider measurements within a certain ®
area around the predicted location. é

= Large gain in efficiency, since only a small ¢

region needs to be searched

e Nearest-Neighbor Filter

> Among the candidates in the gating region, ® o
only take the one closest to the prediction x, ®

Zl(k) _ argminj( () y§k)) (x (kl>_y§k>) °

- Better: the one most Ilkely under a Gaussian prediction model
zl(k) = argmax; N(y, k). ;(akz)a Z(k))
which is equivalent to taklng the Mahalanobis distance

z = argmin;(x,1 — y;) 2] (Xp1 — ¥;)
B. Leibe
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Recap: Track-Splitting Filter

e |dea (1)
» Instead of assigning the measurement that is .z12
currently closest, as in the NN algorithm, 02& )
select the sequence of measurements : Z§3)

that minimizes the total Mahalanobis distance

. L@y g @
over some interval! 1 2

> Form a track tree for the different association decisions

> Modified log-likelihood provides the merit of a particular
node in the track tree.

» Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

e Problem

~ The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.
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Recap: Pruning Strategies

e In order to keep this feasible, need to apply pruning
> Deleting unlikely tracks

- May be accomplished by comparing the modified log-likelihood A (%),
which has a x? distribution with kn_ degrees of freedom, with a
threshold « (set according to 2 distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

= Use sliding window or exponential decay term.

~ Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

~ Only keeping the most likely [V tracks
- Rank tracks based on their modified log-likelihood.
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Summary: Track-Splitting Filter

e Properties

> Very old algorithm

- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and
Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20,
pp. 101-104, 1975.

> Improvement over NN assignment.

» Assignment decisions are delayed until more information is
available.

e Many problems remain
» Exponential complexity, heuristic pruning needed.

> Merging of track nodes is necessary, because tracks may share
measurements, which is physically unrealistic.

= Would need to add exclusion constraints such that each
measurement may only belong to a single track.

= Impossible in this framework...
B. Leibe

<
-—
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)




<
-
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
(&)

Topics of This Lecture

e Multi-Hypothesis Tracking (MHT)

> Basic idea

> Hypothesis Generation
> Assignment

> Measurement Likelihood
> Practical considerations

B. Leibe
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Multi-Hypothesis Tracking (MHT)

e |ldeas
» Again associate sequences of measurements.
~ Evaluate the probabilities of all association hypotheses.

~ For each sequence of measurements (a hypothesized track), a
standard KF yields the state estimate and covariance

e Differences to Track-Splitting Filter 0

> Instead of forming a track tree, keep a set of hypotheses @2
that generate child hypotheses based on the associations. z§2)

» After each hypothesis generation step, merge and (3)
° .Zl
prune the current hypothesis set to keep the (@) (@)
approach feasible. 2@ 0%

> Integrate track generation into the assignment process.

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.

B. Leibe
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http://dx.doi.org/10.1109/TAC.1979.1102177
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RWTH
Target vs. Measurement Orientation

e Target-oriented approaches

~ Evaluate the probability that a measurement belongs to an
established target.

e Measurement-oriented approaches

~ Evaluate the probability that an established target or a new
target gave rise to a certain measurement sequence.

~ This makes it possible to include track initiation of new targets
within the algorithmic framework.

e MHT

> Measurement-oriented
> Handles track initialization and termination

B. Leibe
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RWTH
Challenge: Exponential Complexity

e Strategy

» Generate all possible hypotheses and then depend on pruning
these hypotheses to avoid the combinatorial explosion.

= Exhaustive search
~ Tree data structures are used to keep this search efficient

e Commonly used pruning techniques
» Clustering to reduce the combinatorial complexity
> Pruning of low-probability hypotheses
> N-scan pruning
> Merging of similar hypotheses

B. Leibe
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MHT Outline

FHypotheses at time k-1
Nk—1

Hypotheses at time k
ﬂk

T

Hypothesis Management
(pruning, merging)

For Each Hypothesis ©F~? T
Generate Predictions

-4—] delay [¢—

Hypothesis Generation

X (k)

Predicted Features Hypothesis Matriz

vy (k)

Qbserved Fealures

Feature Extraction

Raw Sensor Data
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Image source: [Cox, [JCV’93]
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Hypothesis Generation

e Formalization
. Set of hypotheses at time k: (k) — {Qg"’)}

. This set is obtained from Q*1) and the latest set of
measurements

k k
Yo =y oy

- The set Q) is generated from Q1) by performing all feasible
associations between the old hypotheses and the new
measurements Y (%),

e Feasible associations can be
~ A continuation of a previous track
> A false alarm
> A new target

B. Leibe
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Hypothesis Matrix

e Visualize feasible associations by a hypothesis matrix

X1 XoXfqXnt - _eYi

10 1 1] w RN TP
o_ |1 1 1 1] ¥ ry®e 0 ys
{01 1 1 Y3 '\ //\_ !
0 0 1 1| Ya > ST X2

e Interpretation
> Columns represent tracked objects
> Rows represent measurements

- A non-zero element at matrix position (7,j) denotes that
measurement y, is contained in the validation region of track x..

- Extra column x, for association as false alarm.

> Extra column x , for association as new track.
B. Leibe

17



Assignments

e Turning feasible associations into assignments
» For each feasible association, we generate a new hypothesis.

» Let Q( ) be the j-th hypothesis at time & and Q(’“(“j)l) be the

parent hypothesis from which Q( )was derived.

» Let Zj(.'IC ) denote the set of aSSIgnments that gives rise to ng ),

E > Assignments are again best visualized in matrix form
Q

S

§ Zj X1 X9 xfa Xnt

i‘ Yy 0 0 1 0

§ Y, 1 0 0 0

g Y3 0 1 0 0

Q

E Y4 0 0 0 1

o

B. Leibe
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Assignments
A ; X, X, X fq X,
v, 0 0 1 0
Y, 1 0 0 0
Vs 0 1 0 0
Y, 0 0 0 1

e Impose constraints
» A measurement can originate from only one object.
= Any row has only a single non-zero value.

> An object can have at most one associated measurement per
time step.

= Any column has only a single non-zero value, except for x;,, x,,

19
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RWNTH
Calculating Hypothesis Probabilities

e Probabilistic formulation
~ It is straightforward to enumerate all possible assignments.

- However, we also need to calculate the probability of each child
hypothesis.

> This is done recursively:

k k
p(Y®)) = p(zy" QP Y ™)
Bayes k k—1 k k—1
= (Y912, 0,0 (2", 9,
k k—1 k k—1 k—1
= (YW1 27, 0, (2310, e ()
Normalization Measurement Prob. of Prob. of
factor likelihood assighment set  parent
20
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Measurement Likelihood

e Use KF prediction

> Assume that a measurement y(k) associated to a track X has a

Gaussian pdf centered around the measurement prediction ng)
with innovation covariance 2( ),

» Further assume that the pdf of a measurement belonging to a
new track or false alarm is uniform in the observation volume W

(the sensor’s field-of-view) with probability 1V -1,

> Thus, the measurement likelihood can be expressed as

M;,
p(Y(k)‘Z§k)aQ(k71)> _ HN( (k). ijz(k)) —(1-:)

p(J)

’L

M,
_ W_(Nfal+N'n,e'w) HN( (k). Xj; Z(k))
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Probability of an Assignment Set
(21055

e Composed of three terms

1. Probability of the number of tracks N, N;,;, N,
- Assumption 1: N, , follows a binomial distribution

k—1 N det - et
P(Naerl27”) = (Ndet>p2vet (1 = paeq) N~ Neet

where N is the number of tracks in the parent hypothesis

- Assumption 2: N, and N, both follow a Poisson distribution

new
with expected number of events A, ,Wand A, W

_ N -
P(Ndet,Nfaz,wa!Q(k 1)) _ (Nd t ) p%ﬁ(l — Pey) N Naet)

p(J)

'/-L(Nfalg /\falW) ) M(Nnewg /\new W)
22
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RWNTH
Probability of an Assignment Set

2. Probability of a specific assignment of measurements
- Such that M, = N,,, + Ny, + N, holds.

- This is determined as 1 over the number of combinations
M, My, — Nget My — Nget — Ny
Ndet Nfal Nnew
3. Probability of a specific assignment of tracks

- Given that a track can be either detected or not detected.
- This is determined as 1 over the number of assignments

N'! NNdet)
(N — Ndet)! Ndet

B. Leibe
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Measurement Likelihood

e Combining all the different parts
> Nice property: many terms cancel out!
» (Derivation left as exercise)

= The final probability p (ng) |Y(k)) can be computed in a very
simple form.

> This was the main contribution by Reid and it is one of the
reasons why the approach is still popular.

e Practical issues
» Exponential complexity remains

> Heuristic pruning strategies must be applied to contain the
growth of the hypothesis set.

» E.g., dividing hypotheses into spatially disjoint clusters.

24
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References and Further Reading

e A good tutorial on Data Association

> 1.J. Cox. A Review of Statistical Data Association Techniques for
Motion Correspondence. In International Journal of Computer
Vision, Vol. 10(1), pp. 53-66, 1993.

e Reid’s original MHT paper

> D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans.
Automatic Control, Vol. 24(6), pp. 843-854, 1979.
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