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Course Outline

e Single-Object Tracking
e Bayesian Filtering
> Kalman filters

> Particle filters
> Case studies

e Multi-Object Tracking
> Introduction
- MHT, JPDAF
> Network Flow Optimization

e Articulated Tracking
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Recap: Particle Filtering

e Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

» Sample space

> Randomly Chosen = Monte Carlo (MC)

~ As the number of samples become very large - the
characterization becomes an equivalent representation
of the true pdf.

<
-—
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
(&)

Slide adapted from Michael Rubinstein B. Leibe



RWTH
Recap: Sequential Importance Sampling

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=_0 Initialize
for ¢« = 1:N
x! ~ q(x|Xt_1, y¢) Sample from proposal pdf

3 - | x4 )p(xt|xt_
G w; = wz_lp(%‘ t)ZZ( txi1) Update weights
E q(xt|xt_1,¥t)
‘z{ n=mn-+ w;‘; Update norm. factor
} end
Iz
; for i = 1:N
g. wi = w!/n Normalize weights
O
1 end 4

Slide adapted from Michael Rubinstein B. Leibe



Recap: Sequential Importance Sampling

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0

Initialize
for : = 1:N

x!t ~ (%X, ve) Sample from proposal pdf
- - - X’ ?‘y{ x?
L wW; = Wy_4 P(y:[x:)p ‘ t 1) Update weights
E (Xt‘xt 1
» n=n+w Update norm. factor
g d For a concrete algorithm,
B en we need to define the
; for i = LN importance density ¢(.|.)!
‘ls . . ° °
2 wy = w; /N Normalize weights
O
1 end 5

Slide adapted from Michael Rubinstein B. Leibe



RWNTH
Recap: SIS Algorithm with Transitional Prior

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0 Initialize
for i = 1:N
x;"é ~ p(Xt\Xi_l) Sample from proposal pdf

<
'g, wy = wy_1p(y:|x}) Update weights
S
fz{ n=n+uw Update norm. factor
§ end T;'ansmonal prior i
i for i = 1I'N q(X¢|x;_1,¥t) = P(X¢|X¢ 1)
g_ wi — wi /n Normalize weights
o]
5 end 6

Slide adapted from Michael Rubinstein B. Leibe



Recap: Resampling

e Degeneracy problem with SIS
~ After a few iterations, most particles have negligible weights.

~ Large computational effort for updating particles with very small
contribution to p(x, | y,.,)-

e |ldea: Resampling

~ Eliminate particles with low importance weights and increase
the number of particles with high importance weight.

N 1Y
{X;,fwi}.:l — {xi*, —}
‘ N )iz
» The new set is generated by sampling with replacement from
the discrete representation of p(x, | y,,) such that

Pr {X;’g* — X;Z} = w;
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RWNTH
Recap: Efficient Resampling Approach

e From Arulampalam paper:

ﬁlgollthm 2: Resampling Algorithm
[, wj, )] = RESAMPLE [{x), wf )]

* Inltlallze the CDF: ¢ =0

* FOR ¢ = 2: N,

— Construct CDF: -';:i=-‘.1i-:—1—|-‘w§r.

END FOR

Start at the bottom of the CDF: ¢=1
Draw a starting point: g ~U[0, N7
FOR j = 1: g

— Move along the CDF: wu; —uy +N;1j—1)
— WHILE u; > ¢

# ¢ =4+ 1

_ END WHILE Basic idea: choose one initial

<
-—
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

_ Assign sample: xi* =xi small random number; deter-
_ Assign weight: wl = N ministically sample the rest
_ Assign parent: ¥ =i by “crawling” up the cdf.
s END FOR This is O(N)!
B. Leibe

Slide adapted from Robert Collins



Recap: Generic Particle Filter
function [{X%,wg}il} — PF [{Xi_l,wi_l}j\le ,yt}

Apply SIS filtering {{Xi,wi}il} = SIS [{Xi_l,wi_l}il ,yt}
1
N .
2 i—1(w;)?

Calculate N g =

if N <Ny,
{xiwit, | = RESAMPLE | {x}, i}, |
end

e We can also apply resampling selectively
- Only resample when it is needed, i.e., N, is too low.
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= Avoids drift when there the tracked state is stationary.

Slide adapted from Michael Rubinstein B. Leibe
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Sampling-Importance-Resampling Algorithm

function [X;] = SIR [X;_1,y:]

i}t:Xt:@
for 1 = 1:N

Sample x! ~ p(x¢]x:_)

wy = p(ys[x;)
end
for + = 1:N
Draw @ with probability o wi

Add X! to X,

end

Slide adapted from Michael Rubinstein B. Leibe

Initialize

Generate new samples

Update weights

Resample

10
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Slide adapted from Michael Rubinstein

Sampling-Importance-Resampling Algorlthm

function [X;] = SIR [X;_1,y:]

-)Et:-)(tzm
for 1 = 1:N

Sample x! ~ p(x¢]x:_)

wi = P(.Vt|Xi)
end
for i1 = 1:N

Draw © with probability o ’wi

Add X% to X,

end
B. Leibe

Important property:

Particles are distributed
according to pdf from
previous time step.

Particles are distributed
according to posterior
from this time step.

11



Computer Vision Il, Summer’14

Today: Multi-Object Tracking
! |

CHEN
UNIVERgFTY
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[Ess, Leibe, Schindler, Van Gool, CVPR’08; ICRA’09; PAMI’09]
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Topics of This Lecture

Multi-Object Tracking

> Motivation
> Ambiguities

Simple Approaches

> Gating

> Mahalanobis distance

~ Nearest-Neighbor Filter

Track-Splitting Filter
> Derivation
> Properties

Outlook

B. Leibe
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Elements of Tracking

T
\
e 1®
O .__ /
Detection Data association

e Detection

» Where are candidate objects?

e Data association
» Which detection corresponds to which object?

e Prediction

Prediction

Lecture 7

Today'’s topic

Lectures 8-10

~ Where will the tracked object be in the next time step?

B. Leibe
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Motion Correspondence

e Motion correspondence problem

> Do two measurements at different times
originate from the same object?

e Why is it hard? s
~ First make predictions for the expected ( o 9
locations of the current set of objects e y /
~ Match predictions to actual measurements a
- This is where ambiguities may arise... ¢

B. Leibe

15



RWTH
Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
> Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
> Newly visible objects, or just noise?

3. More than one measurement may match a prediction
> Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions

> Which object shall the measurement be assigned to?
B. Leibe
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Topics of This Lecture

e Simple Approaches
> Gating
> Mahalanobis distance
~ Nearest-Neighbor Filter

B. Leibe

17
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Let’s Formalize This

e Multi-Object Tracking problem

- We represent a track by a state vector x, e.g.,
T
X = [il?, Y, Ua:avy]
> As the track evolves, we denote its state by the time index k:

(k) _ {xw, Y8 k) vg’”] g

~ At each time step, we get a set of observations (measurements)

> We now need to make the data association between tracks

{ng), e :XE\I;Q} and observations{ygk), - ,yg\’;i }:
Zl( g =g iff y§k) is associated with xl(k)

18
B. Leibe
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RWTH
Reducing Ambiguities: Simple Approaches

e Gating
> Only consider measurements within a certain
area around the predicted location. é

= Large gain in efficiency, since only a small ¢

region needs to be searched

e Nearest-Neighbor Filter

> Among the candidates in the gating region, ® o
only take the one closest to the prediction x, ®

Zl(k) _ argminj( () y§k)) (x (kl>_y§k>) °

- Better: the one most Ilkely under a Gaussian prediction model
zl(k) = argmax; N(y, k). ;(akz)a Z(k))
which is equivalent to taklng the Mahalanobis distance

z = argmin;(x,1 — y;) 2] (Xp1 — ¥;)
B. Leibe

19



RWTH
Gating with Mahalanobis Distance

e Recall: Kalman filter
~ Provides exactly the quantities necessary to perform this
- Predicted mean location x,

> Prediction covariance Zp

> The Kalman filter prediction covariance also defines a useful
gating area.

= E.g., choose the gating area size such that 95% of the
probability mass is covered.

e Side note

» The Mahalanobis distance is x? distributed with the number of
degrees of freedom n, equal to the dimension of x.

~ For a given probability bound, the corresponding threshold on

the Mahalanobis distance can be got from 2 distribution tables.
20

<
-
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

B. Leibe



Mahalanobis Distance

e Additional notation
- Our KF state of track x; is given by P ’.’ ‘\‘
/7
the prediction X;(fz) and covariance ngkl). /e
| | @
- We define the innovation that measure- . ,’/ g
ment y ; brings to track x; at time k as B

(k) = ( (k) _ (k‘))

V Yy p,l

~ With this, we can write the observation likelihood shortly as

k) (k I ()T (k) (K
p(y" x| ))NeXp{ 2V§l) 2 Vj(z)}

- We define the ellipsoidal gating or validation volume as
V) = iy - )T v %)) <o)

B. Leibe
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Problems with NN Assignment

e Limitations

> For NN assignments, there is always a finite chance that the
association is incorrect, which can lead to serious effects.

= If a Kalman filter is used, a misassighed measurement may lead
the filter to lose track of its target.

> The NN filter makes assignment decisions only based on the
current frame.

> More information is available by examining subsequent images.

= Let’s make use of this information by postponing the decision
process until a future frame will resolve the ambiguity...

B. Leibe
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Topics of This Lecture

e Track-Splitting Filter
> Derivation
> Properties

<
-—
"
(«})
=
£
-
(7p)
c
L)
2
P
-
(]
-
-
o
=
(o]
(&)

23
B. Leibe



<
-—
"
(]
£
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
£
(o]
(&)

Track-Splitting Filter

e |Idea

~ Problem with NN filter was hard assignment. o ¢

> Rather than arbitrarily assigning the closest ..
measurement, form a tree. V.

> Branches denote alternate assignments.

> No assignment decision is made at this stage! .z§1>

= Decisions are postponed until additional ® z§2)
measurements have been gathered... .Zgg)

e Potential problems?

» Track trees can quickly become very large due
to combinatorial explosion.

= We need some measure of the likelihood of a track,
so that we can prune the tree!

B. Leibe

NERANEC
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Track Likelihoods

e Expressing track likelihoods (1)

- Given a track /, denote by 0, ; the event that 'Zi 2
the sequence of assignments ¢z
(3)
_ /. (k) ®Z
Ly, = {Z?Zl,l? e zk,l}

2(4)0 [ 2(4)
1 2
from time 1 to £ originate from the same object.

- The likelihood of 0, , is the joint probability over all observations
in the track

k
L) = Hp i
7j=1

> |If we assume Gaussian observation Iikelihoods this becomes

0w = ] Zviffz“ vl

J:1

Z(g 1,0 0,1)
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(2m)% |Z(3)‘2

- 25
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Track Likelihoods (2)

e Starting from the likelihood

L(6)) =H

- - Z(J)‘Q

__ZV(J) Z(J) ey

15,1 15,1

- Define the modified log-likelihood )\l for track [ as
L(0y,1)
k _diw() 1L
J G R

_ Z V(J)TE(J C)

15,1 5,1

)\[ (k) = —2 log

Y = At

’Lk;,l

= Recursive calculation, sum of Mahalanobis distances of all the
measurements assigned to track /.
B. Leibe
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Track-Splitting Filter

e Effect (1)
» Instead of assighing the measurement that is .Z12
currently closest, as in the NN algorithm, 02& )

we can select the sequence of measurements ! zf’)

that minimizes the total Mahalanobis distance

. 2(4)0 9 z(4)
over some interval! 1 2

~ Modified log-likelihood provides the merit of a particular
node in the track tree.

~ Cost of calculating this is low, since most terms are needed
anyway for the Kalman filter.

e Problem

» The track tree grows exponentially, may generate a very large
number of possible tracks that need to be maintained.

B. Leibe
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Pruning Strategies

e In order to keep this feasible, need to apply pruning
~ Deleting unlikely tracks

- May be accomplished by comparing the modified log-likelihood A (%),
which has a x? distribution with kn_ degrees of freedom, with a
threshold « (set according to 2 distribution tables).

- Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

= Use sliding window or exponential decay term.

~ Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
- E.g., if both tracks validate identical subsequent measurements.

~ Only keeping the most likely [V tracks
- Rank tracks based on their modified log-likelihood.

28
B. Leibe
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Summary: Track-Splitting Filter

e Properties

» Very old algorithm

- P. Smith, G. Buechler, A Branching Algorithm for Discriminating and
Tracking Multiple Objects, IEEE Trans. Automatic Control, Vol. 20,
pp. 101-104, 1975.

> Improvement over NN assignment.

» Assignment decisions are delayed until more information is
available.

e Many problems remain
» Exponential complexity, heuristic pruning needed.

> Merging of track nodes is necessary, because tracks may share
measurements, which is physically unrealistic.

= Would need to add exclusion constraints such that each
measurement may only belong to a single track.

= Impossible in this framework...
B. Leibe

29



RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Qutlook
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Outlook for the Next Lectures

e More powerful approaches

> Multi-Hypothesis Tracking (MHT)
- Well-suited for KF, EKF approaches [Reid, 1979]

> Joint Probabilistic Data Association Filters (JPDAF)
- Well-suited for PF approaches [Fortmann, 1983]

e Data association as convex optimization problem
» Bipartite Graph Matching (Hungarian algorithm)
> Network Flow Optimization
= Efficient, globally optimal solutions for subclass of problems.

31
B. Leibe
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RWNTH
References and Further Reading

e A good tutorial on Data Association

> 1.J. Cox. A Review of Statistical Data Association Techniques for
Motion Correspondence. In International Journal of Computer
Vision, Vol. 10(1), pp. 53-66, 1993.

32
B. Leibe
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