Computer Vision Il - Lecture 10

Particle Filters (The Gritty Details)

27.05.2014

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcement

 Problems with exam registration fixed...
> ...for Master CS and Master SSE
> You should now be able to register
> | extended the registration deadline until this Friday (30.05.)

e Exchange students can register directly with us
~ If registration is not possible via ZPA

e Please let us know if problems persist.
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Course Outline

e Single-Object Tracking
> Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
> Tracking by online classification
~ Tracking-by-detection

e Bayesian Filtering
> Kalman filters
~ Particle filters
~ Case studies

e Multi-Object Tracking
e Articulated Tracking
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Figure from Isard & Blake

B. Leibe

Today: Beyond Gaussian Error Models

1 . Jowwing ‘|| uoisip J93ndwon
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Topics of This Lecture

e Recap: Extended Kalman Filter
> Detailed algorithm

e Particle Filters: Detailed Derivation
~ Recap: Basic idea
~ Importance Sampling
> Sequential Importance Sampling (SIS)
~ Transitional prior
» Resampling
~ Generic Particle Filter
> Sampling Importance Resampling (SIR)

B. Leibe



Recap: Kalman Filter

e Algorithm summary
> Assumption: linear model

X = Dyxy1+¢&
y: = Mix; + 04
~ Prediction step
x, = Dix/_,
¥, = DX DI +3,
> Correction step
K, = =;MI (M,S; M +%,,,)
X = x; + K (ye — Mix;)
Ej = (I-K:M) X,
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Recap: Extended Kalman Filter (EKF)

e Algorithm summary
> Nonlinear model
Xt = g(x¢-1)+ &
y: = h(x¢)+0

x; = x; + K¢ (ye—h(x;)) e
22_ — (I — Kth) Et—

> Prediction step with the Jacobians
- _ +
_ X
: X = GELGY +E, G = =
“:’ x szj—l
— > Correction step
c _ _ —1 oh(x
S ox _
g
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€
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Topics of This Lecture

e Particle Filters: Detailed Derivation
~ Recap: Basic idea
~ Importance Sampling
> Sequential Importance Sampling (SIS)
~ Transitional prior
» Resampling
~ Generic Particle Filter
> Sampling Importance Resampling (SIR)

B. Leibe
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Recap: Propagation of General Densities

m

A
plx)

=

plx)

AN

o
-

reactive effect of measurement

Slide credit: Svetlana Lazebnik

i
p(x)

Y

stochastic diffusion

plx)

Y

B. Leibe
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Recap: Factored Sampling

A
Probability

posterior
density

@ weighted

W

o @ @O .. o State ™

-

e |dea: Represent state distribution non-parametrically
- Prediction: Sample points from prior density for the state, P(X)
- Correction: Weight the samples according to P(Y | X)

P(yt | Xt)P(Xt | Yoi- -, yt—l)
P(yt | Xt)P(Xt | yO""’ yt—l)dxt

P(Xt|yo,...,yt):J.
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B. Leibe Figure from Isard & Blake

Slide credit: Svetlana Lazebnik
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Particle Filtering

e Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

Posterior

» Sample space

> Randomly Chosen = Monte Carlo (MC)

~ As the number of samples become very large - the
characterization becomes an equivalent representation
of the true pdf.

Slide adapted from Michael Rubinstein B. Leibe

11



Particle filtering

e Compared to Kalman Filters and their extensions
~ Can represent any arbitrary distribution
> Multimodal support
~ Keep track of as many hypotheses as there are particles

~ Approximate representation of complex model rather than exact
representation of simplified model

e The basic building-block: Importance Sampling
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Recap: Monte-Carlo Sampling

e Objective:
- Evaluate expectation of a function f(z) p(2)
w.r.t. a probability distribution p(z).

- [ t@pia)az

e Monte Carlo Sampling idea -

- Draw L independent samples z!) with [ = 1,...,L from p(z).

f(z)

aY

> This allows the expectatlon to be approximated by a finite sum
L
1=1
- As long as the samples z() are drawn independently from p(z),
then Em = E[/]

= Unbiased estimate, independent of the dimension of z!
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Image source: C.M. Bishop, 2006

Slide adapted from Bernt Schiele B. Leibe
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Monte Carlo Integration

e We can use the same idea for computing integrals

~ Assume we are trying to estimate a complicated integral of a
function f over some domain D:

F =] f()dx

> Also assume there exists some PDF p defined over D. Then

F = [ f(x)dx = j f(x) 0 (X)dxX

~ For any pdf p over D, the following holds

f (%) qdq:E{ux)}
Jo iy PO (%)

Slide adapted from Michael Rubinstein

B. Leibe
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Monte Carlo Integration

e |dea (cont’d)

> Now, if we have i.i.d random samples z,..., =, sampled from p,
then we can approximate the expectation

E{ f(i)}

pP(X)

> by N V7
Eo_ 1 f(X)

N —

N =1 p()_(l)

» Guaranteed by law of large numbers:

N — oo, F, —>E{f(x)} F
pP(X)

> Since it guides sampling, p is often called a proposal distribution.
15
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Importance Sampling

e Let’s consider an example

" N i=1 p()_(.)
- f/p is the importance weight of a e )

sample.
> What can go wrong here?

e What if p(z)=0 ?
- If pis very small, then f/p can get arbitrarily large!

= Design p such that f/p is bounded.

- Effect: get more samples in “important” areas of f,
i.e., where fis large.
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Image source: C.M. Bishop, 2006

Slide adapted from Michael Rubinstein B. Leibe



RWTH
Proposal Distributions: Other Uses

e Similar Problem
» For many distributions, sampling directly from p(z) is difficult.
» But we can often easily evaluate p(z) (up to some normalization

factor Zp): 1
Z) = —p(z
p(z) pr( )
»8 ¢ |dea
E’ » Take some simpler distribution ¢(z) as proposal distribution
= from which we can draw samples and which is non-zero.
7))
i kq(zo) i
9
(72)
2
g
] S
E 0
O
o - % z""

17
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006




Recap: Importance Sampling

e Idea

» Use a proposal distribution ¢(z) from which it is easy to draw
samples and which is close in shape to f.

» Express expectations in the form of a finite sum over samples
{zD} drawn from ¢(z).

Blf] — [ fp@dz— [ 2

2
~] —
] =
==
SYICN

> with importance weights
p(z")

q(z®)

Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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UNIVERSITY
lllustration of Importance Factors

e Goal: Approximate target density f
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B. Leibe Figure source: Thrun, Burgard, Fox
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e Goal: Approximate target density f
- Instead of sampling from f directly, we can only sample from g.
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B. Leibe Figure source: Thrun, Burgard, Fox



lllustration of Importance Factors

e Goal: Approximate target density f
- Instead of sampling from f directly, we can only sample from g.

- A sample of fis obtained by attaching the weight f/g to each
sample x.
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B. Leibe Figure source: Thrun, Burgard, Fox



Interpretation for Tracking

-~ Tracking application:
Posterior of the
current frame

Tracking application:
Posterior from the

previous frame
1~

1 1

e Goal: Approx1mate target denSIty f
- Instead of sampling from f directly, we can only sample from g.

- A sample of fis obtained by attaching the weight f/g to each
sample x.
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B. Leibe Figure source: Thrun, Burgard, Fox




RWTH
Importance Sampling for Bayesian Estimation

E[f(X)] — /fXOt P(XOt\YH)dXOt

P X0:t|Y1:
— / f Ot t‘ t)Q(XOIt‘yl:t)dXO:t
XO:t‘yl:t)

e Applying Importance Sampling
> Characterize the posterior pdf using a set of samples (particles)
and their weights

{xbwi}:
X0:¢» Wy i—=1

> Then the joint posterior is approximated by

p(Xo0:t|y1:t) Zwt (X0:t — Xp:t)
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Slide adapted from Michael Rubinstein B. Leibe



RWTH
Importance Sampling for Bayesian Estimation

E[f(X)] — /fXOt P(XOt\YM)dXOt

p X0:t|Y1:
— /f Ot t‘ t)Q(XO:t‘ylzt)dXO:t
XO:t‘yl:t)

e Applying Importance Sampling
- Draw the samples from the importance density ¢(x,, | y,.,) with
importance weights o p(Xo:t|y1:t)
Wy X

Q(XO:t‘y1:t)
> Sequential update (after some calculation)

- Particle update X q(Xt|X;{,_1,Yt)

. . <\ p(xt|x?
- Weight update ’LU; _ w;_lp(yt| t)pf t‘ t—l)
q(X¢t|x;_1,¥t)
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Slide adapted from Michael Rubinstein B. Leibe



RWNTH
Sequential Importance Sampling Algorithm

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=70 Initialize
for ¢« = 1:N
x! ~ q(x|Xt_1, y¢) Sample from proposal pdf

3 - | x4 )p(xt|xt_
G w; = fw;_lp(w‘ t)ZZ( txi1) Update weights
E q(xt|xt_1,¥t)
‘z{ n=mn-+ w;‘; Update norm. factor
} end
Iz
; for i = 1:N
g. wi = w!/n Normalize weights
S end

26
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Sequential Importance Sampling Algorithm

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0

Initialize
for i = 1:N
x!t ~ (%X, ve) Sample from proposal pdf
- - - X’ ?‘y{ x?
L wW; = Wy_4 P(y:[x:)p ‘ t 1) Update weights
E (Xt‘xt 1
» n=n+w Update norm. factor
g d For a concrete algorithm,
B en we need to define the
; for i = LN importance density ¢(.|.)!
é. w; = w;/n Normalize weights
o]
1 end

27

Slide adapted from Michael Rubinstein B. Leibe
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Choice of Importance Density

e Most common choice
~ Transitional prior

Q(Xt|xi—1a)’t) = p(xt|xi_1)
~ With this choice, the weight update equation simplifies to

i i p(Yt‘X%)P(XHXi—ﬂ

wy = W4_ -
‘ =l Q(Xt|x'?é—17Yt)

. p(yexh)p(3ex)

= wi—lP(Yﬂxi)

Slide adapted from Michael Rubinstein B. Leibe
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SIS Algorithm with Transitional Prior

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]

n=>0
for 1 = 1:N

X ~ p(Xe|x;_)

w; = wi_1p(y|x})
n=n+uwj
end
for 1 = 1:N
wy = wy/n
end

Slide adapted from Michael Rubinstein

B. Leibe

Initialize

Sample from proposal pdf

Update weights

Update norm. factor

Normalize weights

29



RWNTH
SIS Algorithm with Transitional Prior

function [{x@,wg}j\;] — SIS [{Xi_lawi—l}j\il ayt]
n=20
for : = 1:N

Draw € from noise distribution

Xi — 8 (Xi—l) + 5%

Initialize

Sample from proposal pdf

<

5 wy = wi_1p(ye|x;) Update weights

:

‘z{ n=mn-+ w;‘; Update norm. factor
A end

@

< for i =L:N

g. wi = w!/n Normalize weights

o

=8 end

30

Slide adapted from Michael Rubinstein B. Leibe
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The Degeneracy Phenomenon

e Unavoidable problem with SIS
~ After a few iterations, most particles have negligible weights.

~ Large computational effort for updating particles with very small
contribution to p(x, | y,.,)-

e Measure of degeneracy

~ Effective sample size
N — 1
T (wh)?
1=1 t
> Uniform: Ny =N
- Severe degeneracy: Nepp=1

31

Slide adapted from Michael Rubinstein B. Leibe



<
-
"
(]
=
£
-
(7p)
c
L)
2
>
-
(]
-
-
(o
=
(o]
O

Resampling

e Idea

~ Eliminate particles with low importance weights and increase
the number of particles with high importance weight.

N 1 N
X, Ww ) — X —
{ t’ t}z:l { t ) 7\? }
1=1

> The new set is generated by sampling with replacement from
the discrete representation of p(x, | y,,) such that

Pr {Xi* = Xg} = W]

Slide adapted from Michael Rubinstein B. Leibe
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Resampling

e How to do that in practic%?
> We want to resample {x;@ }Z.Zl from the discrete pdf given by

. N
the weighted samples {x;, w; | .

N
. l.e., we want to draw N new samples{xi}i:1 with replacement

where the probability of drawing Xg is given by wg .

e There are many algorithms for this
> We will look at two simple algorithms here...

_ 33
B. Leibe



CHEN
. UNIVERSITY
Inverse Transform Sampling

e Idea

» It is easy to sample from a discrete distribution using the
cumulative distribution function F'(z) = p(X < z).

k N
c(k) =) wi/ » w

N

<
F
.
Q
=
=
-
(7))
c
S
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>
-
Q
-
-
o
=
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Slide adapted from Robert Collins B. Leibe



RWTHAACHEN
. UNIVERSITY
Inverse Transform Sampling

e Idea

> It is easy to sample from a discrete distribution using the
cumulative distribution function F'(z) = p(X < z).

e Procedure

1. Generate uniform v in ,
the range [0,1].
2. Visualize a horizontal

line intersecting the
bars.

3. If index of intersected u
bar is 7, output new

sample x .
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More Efficient Approach

e From Arulampalam paper:

ﬁlgollthm 2: Resampling Algorithm
[{x=". wi,, ¥}12]=RESAMPLE [{x], wj}iz]
* Inltlallze the CDF: ¢ =0
* FOR ¢ = 2: N,

— Construct CDF: -';:i=-‘.1i-:—1—|-‘w§r.

# END FOR
< # Start at the bottom of the CDF: =1
% # Draw a starting point: g ~U[0, N7
£ # FOR j = 1: N,
g — Move along the CDF: wu; —uy +N;1j—1)
“ — WHILE u; > ¢
£ - ":E;D‘;HllLE Basic idea: choose one initial
% _ Assign sample: xi* =xi sn.la.ll ltandom number; deter-
5 _ Assign weight: w) = NI ministically sample the rest
3 _ Assign parent : ﬁ.r S by “crawling” up the cdf.
£ s END FOR This is O(N)!
&)

B. Leibe

Slide adapted from Robert Collins
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Generic Particle Filter
function [{X%,wg}il} — PF [{Xi_l,wi_l}j\le ,yt}
Apply SIS filtering {{Xi,wi}il} = SIS [{Xi_l,wi_l}il ,yt}
Calculate N,
if N <Ny,
{xiwi},| = RESAMPLE | {xi, i}, |
end
e We can also apply resampling selectively

> Only resample when it is needed, i.e., Neff is too low.
= Avoids drift when there the tracked state is stationary.

Slide adapted from Michael Rubinstein B. Leibe
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Other Variant of the Algorithm

function [X;] = SIR [X;_1,y:]

A_}t:thm
for 1 = 1:N

Sample x| ~ p(x¢|x;_1)

w; = p(y:[xt)
end
for 1 = 1:N
Draw @ with probability o wi

Add X% to X,

end

Slide adapted from Michael Rubinstein B. Leibe

Initialize

Generate new samples

Update weights

Resample

41
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Other Variant of the Algorithm

function [X;] = SIR [X;_1,y:]

-)Et:-)(tzm
for 1 = 1:N

Sample x! ~ p(x¢]x:_)

w; = p(y:[xt)
end
for 1 = 1:N
Draw @ with probability o ’wi

Add X% to X,

end

Slide adapted from Michael Rubinstein B. Leibe

Important property:

Particles are distributed
according to pdf from
previous time step.

Particles are distributed
according to posterior
from this time step.

42



RWTH
Particle Filtering: Condensation Algorithm

Start with weighted
samples from previous

. time step

Sample and shift
—Q : according to dynamics

| model
diffuse

Spread due to
randomness; this is pre-

observatfion diCted denSity p(xt I yt-1)
density \ P |

RS I A N M TN measure Weight the samples
- ~- according to observation
density

Arrive at corrected
density estimate

P(X¢|Y¢)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, IJCV 29(1):5-28, 1998 43

B. Leibe Figure source: M. Isard & A. Blake
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Slide credit: Svetlana Lazebnik
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Summary: Particle Filtering

e Pros:
~ Able to represent arbitrary densities

» Converging to true posterior even for non-Gaussian and
nonlinear system

~ Efficient: particles tend to focus on regions with high probability

» Works with many different state spaces
- E.g. articulated tracking in complicated joint angle spaces

> Many extensions available
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Summary: Particle Filtering

e Cons / Caveats:

~ #Particles is important performance factor
- Want as few particles as possible for efficiency.
- But need to cover state space sufficiently well.

- Worst-case complexity grows exponentially in the dimensions
> Multimodal densities possible, but still single object

- Interactions between multiple objects require special treatment.

- Not handled well in the particle filtering framework
(state space explosion).

B. Leibe
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RWNTH
References and Further Reading

e A good description of Particle Filters can be found in
Ch.4.3 of the following book A

> S. Thrun, W. Burgard, D. Fox. Probabilistic
Robotics. MIT Press, 2006.

e A good tutorial on Particle Filters

> M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian

Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2),
pp. 174-188, 2002.

e The CONDENSATION paper

> M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998

46
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