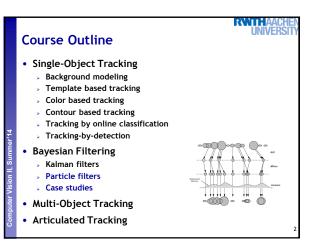
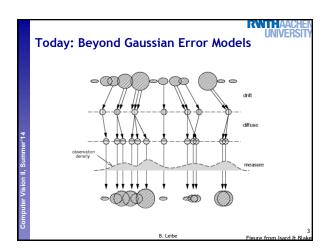
Computer Vision II - Lecture 9

Beyond Kalman Filters

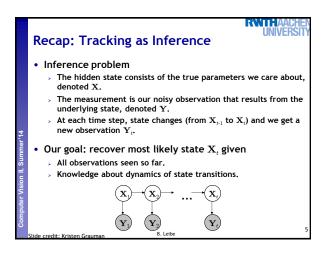
22.05.2014

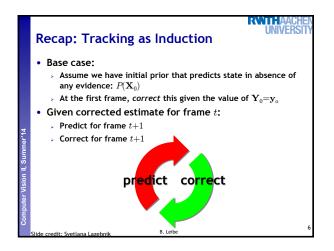
Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

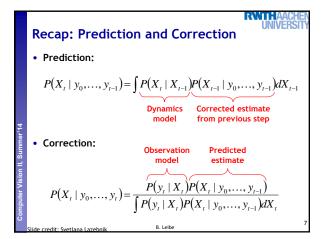


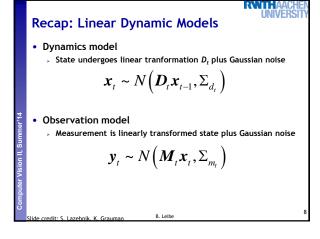


Topics of This Lecture Recap: Kalman Filter Basic ideas Limitations Extensions Particle Filters Basic ideas Propagation of general densities Factored sampling Case study Detector Confidence Particle Filter Role of the different elements

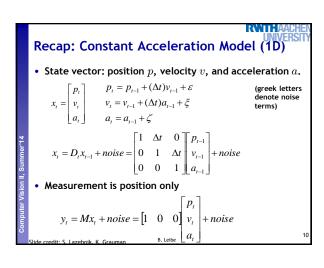


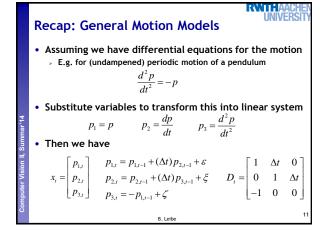


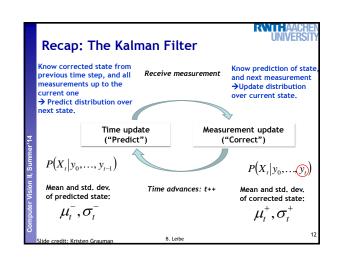


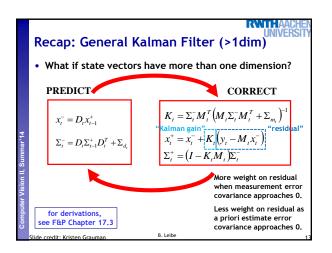


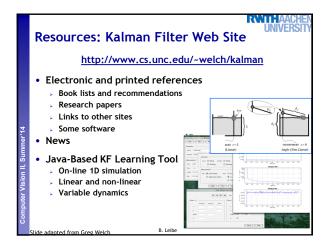
Recap: Constant Velocity Model (1D) • State vector: position p and velocity v $x_t = \begin{bmatrix} p_t \\ v_t \end{bmatrix} \quad p_t = p_{t-1} + (\Delta t)v_{t-1} + \varepsilon \qquad \text{(greek letters denote noise terms)}$ $x_t = D_t x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$ • Measurement is position only $y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 \\ v_t \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$

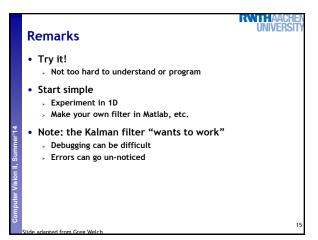


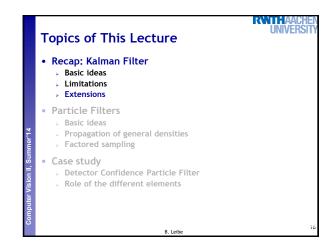












Extension: Extended Kalman Filter (EKF) • Basic idea • State transition and observation model don't need to be linear functions of the state, but just need to be differentiable. $x_i = f\left(x_{i-1}, u_i\right) + \varepsilon$ $y_i = h(x_i) + \xi$ • The EKF essentially linearizes the nonlinearity around the current estimate by a Taylor expansion. • Properties • Unlike the linear KF, the EKF is in general not an optimal estimator. • If the initial estimate is wrong, the filter may quickly diverge. • Still, it's the de-facto standard in many applications • Including navigation systems and GPS

Value Simulation • Unscented Kalman Filter (UKF) • Further development of EKF • Probability density is approximated by nonlinear transform of a random variable. • More accurate results than the EKF's Taylor expansion approx. • Ensemble Kalman Filter (EnKF) • Represents the distribution of the system state using a collection (an ensemble) of state vectors. • Replace covariance matrix by sample covariance from ensemble. • Still basic assumption that all prob. distributions involved are Gaussian. • EnKFs are especially suitable for problems with a large number of variables.

