Course Outline

¢ Single-Object Tracking
» Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification
» Tracking-by-detection
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* Bayesian Filtering
» Kalman filters
» Particle filters
» Case studies
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Today: Beyond Gaussian Error Models Topics of This Lecture
¢ Recap: Kalman Filter

~ Basic ideas

» Limitations

» Extensions

¢ Particle Filters
» Basic ideas
» Propagation of general densities
» Factored sampling

e Case study
» Detector Confidence Particle Filter
» Role of the different elements
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Recap: Tracking as Inference Recap: Tracking as Induction

¢ Inference problem

» The hidden state consists of the true parameters we care about,
denoted X.

» The measurement is our noisy observation that results from the
underlying state, denoted Y.

» At each time step, state changes (from X, to X,) and we get a
new observation Y,.

¢ Base case:

» Assume we have initial prior that predicts state in absence of
any evidence: P(X)

~ At the first frame, correct this given the value of Y=y,
¢ Given corrected estimate for frame ¢:

» Predict for frame ¢t+1

» Correct for frame t+1

e Our goal: recover most likely state X, given
~ All observations seen so far.
» Knowledge about dynamics of state transitions.
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Recap: Prediction and Correction Recap: Linear Dynamic Models

¢ Prediction: ¢ Dynamics model

» State undergoes linear tranformation D, plus Gaussian noise

P(xt [ Yore-es yt—l): P(Xt | xkl):)(xt—l [ Yore-es yt—l)dxt—l
J P(Xal X ~N(Dx ;%)

Dynamics  Corrected estimate

model from previous step
¢ Observation model
e Correction: . . » Measurement is linearly transformed state plus Gaussian noise
Observation Predicted
model estimate

Y, ~ N(Mtxt,zmt)

P N
P(X Iy y)= P(yt|Xt)P(X:IYOl""yl’1)
IO T TR X P(X, [ Yoreees Yo )X,

Slide credit: Svetlana | azebnik B. Leibe
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Recap: Constant Velocity Model (1D) Recap: Constant Acceleration Model (1D)
¢ State vector: position p and velocity v ¢ State vector: position p, velocity v, and acceleration a.
— K |
g o|P] PRt e Pl PPt (AD e oot nafse
\4 V=V +& terms) X =V Ve =V + (A3, +¢ terms)
. 1 At pg . & a=a,+¢
X = DX, +noise = +noise
& 0 1]vy, T 1 At 0 p.
£ £ X, =D +noise=|0 1 At| v, |+noise
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%] * Measurement is position only 2 00 1ja,
c < . .
$ y, = Mx, +noise = [1 O{ pt:|+ noise gl . Measurement is position only
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Recap: General Motion Models Recap: The Kalman Filter
3 5 5 : : Know corrected state from icti
e Assuming we have d1ffer(?nt.1al equatlons for the motion previous time step, and all  Receive measurement Z:gwn er’;ft::ta‘;:\r :;] Set:tte
» E.g. for (undampened) periodic motion of a pendulum measurements up to the >Update distribution
d? p current one over current state.
== p -> Predict distribution over
dt next state.
¢ Substitute variables to transform this into linear system Time update Measurement update
S _ _ dp d? p o (“Predict”) (“Correct”)
[ p=PpP P, =—- Ps=— [}
E dt dt E
Z’- o Then we have z P(X,\yo,..., VH) P(Xl\yo,,..(y))
.g Pt P =Pt (At) Porate 1 a0 -§ Mean and std. dev. Time advances: t++ Mean and std. dev.
> X =1 Py Poy = Poya t+ (at) Peq+ 4 D=0 1 At 4| of predicted state: of corrected state:
2 2 - - + +
E- Pa, Pst =—Pyat+ ¢ -1 0 0 é- lth 1 Gt /ut 1 Gt
o o
o 1 S ' 2
LA ide credit: Kristen Grauman 5. Leibe
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Recap: General Kalman Filter (>1dim)

¢ What if state vectors have more than one dimension?

PREDICT#” ‘ CORRECT

K =M (MM +2, )
“Kalman gain’r--yommmmmmmmmm o, ] “residpial”
X: =X +§_Ktl(yt -Mx )i

Z: =(| _KtMt) ¢

X =D

% =DE,D +5,

Less weight on residual as

'More weight on residual
when measurement error
covariance approaches 0.
a priori estimate error
see F&P Chapter 17.3 N
covariance approaches 0.
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Remarks

e Tryit!
» Not too hard to understand or program

e Start simple
» Experiment in 1D
» Make your own filter in Matlab, etc.

¢ Note: the Kalman filter “wants to work”
» Debugging can be difficult
» Errors can go un-noticed
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lide adapted from Greg Welch
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Extension: Extended Kalman Filter (EKF)

¢ Basic idea

» State transition and observation model don’t need to be linear
functions of the state, but just need to be differentiable.

% = f(x.U)+e
Yo=h(x)+¢
» The EKF essentially linearizes the nonlinearity around the
current estimate by a Taylor expansion.
¢ Properties

> Unlike the linear KF, the EKF is in general not an optimal
estimator.

- If the initial estimate is wrong, the filter may quickly diverge.

» Still, it’s the de-facto standard in many applications
- Including navigation systems and GPS
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Resources: Kalman Filter Web Site

http://www.cs.unc.edu/~welch/kalman

¢ Electronic and printed references
» Book lists and recommendations
» Research papers +\
» Links to other sites
» Some software .

o News —

* Java-Based KF Learning Tool
» On-line 1D simulation
» Linear and non-linear
» Variable dynamics

Slide adapted from Greg Welch B. Leibe
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Topics of This Lecture
¢ Recap: Kalman Filter
» Basic ideas
» Limitations
» Extensions
B. Leibe "
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Kalman Filter - Other Extensions

¢ Unscented Kalman Filter (UKF)
» Further development of EKF

» Probability density is approximated by nonlinear transform of a
random variable.

» More accurate results than the EKF’s Taylor expansion approx.

¢ Ensemble Kalman Filter (EnKF)

» Represents the distribution of the system state using a collection
(an ensemble) of state vectors.

Replace covariance matrix by sample covariance from
ensemble.

Still basic assumption that all prob. distributions involved are
Gaussian.

EnKFs are especially suitable for problems with a large number
of variables.
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Even More Extensions

-/Switching linear dynamical
system (SLDS):
Zp Ty
xp = Az +elz)
ye = Cxy + uy

'\f” ~N(0,E5)) w ~ N0, R)

¢ Switching Linear Dynamic System (SLDS)
. Use a set of k& dynamic models A ..., A}), each of which
describes a different dynamic behavior.

» Hidden variable z, determines which model is active at time ¢.
» A switching process can change z, according to distribution7, _,.
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When Is A Single Hypothesis Too Limiting?
Initial position Prediction Measurement Update
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When Is A Single Hypothesis Too Limiting?
Initial position Prediction Measurement Update
y y y y
° @ D D
X X X X
s
- « Consider this example: s
| say we are tracking the
= face on the right using a
§ skin color blob to get our
> measurement.
E Video from Jojic & Frey
O 25
slide credit: Kristen Grauman B. Leibe Eigure from Thrun & Kosecka)
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Topics of This Lecture

¢ Particle Filters
» Basic ideas
» Propagation of general densities
» Factored sampling

Today: only main ideas

Formal introduction
next Tuesday

B. Leibe
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When Is A Single Hypothesis Too Limiting?
Initial position Prediction Measurement Update
2 2 Y; Y;
° @ D D
X X X X

¢ Consider this example:
say we are tracking the
face on the right using a
skin color blob to get our
measurement.

Video from Jojic & Frey
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Figure from Thrun & Koseckal
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Propagation of General Densities

Hx) plxl
stochastic diffusion
) } o)

reactive effect of measurement

ide credit: Svetlana | azebnik. B. Leibe

Eigure from Isard & Blake)




Factored Sampling

[
Probability posterior
density

® weighted

_/\_/\/\/i

@3 amo - @ State ¥

¢ |dea: Represent state distribution non-parametrically
» Prediction: Sample points from prior density for the state, P(X)
» Correction: Weight the samples according to P(Y |X)

POV | XOP(X, | Yor--o1 Yer)
P(y[ | XI)P(XI | yO““’ ylfl)dxl

P(Xl | yO""’Yl):J‘
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Particle Filtering

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model

Spread due to
randomness; this is pre-
dicted density P(X,|Y,.)
Weight the samples
according to observatior]
density

Arrive at corrected
density estimate
P(Xc]Ye)

diffuse

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, IJCV 29(1):5-28, 1998
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Particle Filtering Results
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Particle Filtering

¢ (Also known as Sequential Monte Carlo Methods)

¢ |dea
» We want to use sampling to propagate densities over time
(i.e., across frames in a video sequence).
» At each time step, represent posterior P(X,|Y,) with
weighted sample set.

» Previous time step’s sample set P(X,| Y.) is passed to next
time step as the effective prior.
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Slide credit: Svetlana | azebnik B. Leibe

Particle Filtering - Visualization
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Particle Filtering Results

¢ Some more examples
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Obtaining a State Estimate Condensation: Estimating Target State

* Note that there’s no explicit state estimate maintained,
just a “cloud” of particles

« Can obtain an estimate at a particular time by querying the
current particle set

* Some approaches
> “Mean” particle

E - Weighted sum of particles E
H - Confidence: inverse variance H
E » Really want a mode finder—mean of tallest peak E
7] 7] From Isard & Blake, 1998
i i State samples Mean of weighted
:% :% (thickness proportional to weight) state samples
5 5
[} 8
5 5
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£l £
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Summary: Particle Filtering Summary: Particle Filtering

e Pros:
» Able to represent arbitrary densities
» Converging to true posterior even for non-Gaussian and
nonlinear system
Efficient: particles tend to focus on regions with high probability
Works with many different state spaces
- E.g. articulated tracking in complicated joint angle spaces
Many extensions available

e Cons / Caveats:
» #Particles is important performance factor
- Want as few particles as possible for efficiency.
- But need to cover state space sufficiently well.
» Worst-case complexity grows exponentially in the dimensions
» Multimodal densities possible, but still single object
- Interactions between multiple objects require special treatment.

- Not handled well in the particle filtering framework
(state space explosion).
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Challenge: Unreliable Object Detectors

Topics of This Lecture

e Example:
» Low-res webcam footage (320x240), MPEG compressed

Detector input Tracker output

¢ Case study
~ Detector Confidence Particle Filter
» Role of the different elements
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How to get from here..,\zj,.to here?

46
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Tracking based on Detector Confidence

‘ o R L8 (avas 20c7
(using ISM detector) (using HOG detector)
¢ Detector output is often not perfect
» Missing detections and false positives
~ But continuous confidence still contains useful cues.

¢ Idea employed here:

» Use continuous detector confidence to track persons over time.
48
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Detector Confidence Particle Filter

o State: @ = {z,y,u v}
* Motion model (constant velocity)
(z,9): = (z,9)e—1+ (u,0)e—1 - At + 2y
(w,v)e = (Uy0)i—1 + Equ,v)
¢ Observation model
wiry = plyrlf”) =
(B-Z(tr) - pw(p—d*J+ [y - de(p) - poltr) +a- cor(p)

Discrete
detections

Detector
confidence
T r———

Classifier
confidence

Computer Vision I, Summer’14
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Each Observation Term Increases Robustness!

Observation Model Terms  MOTP  MOTA

FPID Sw

0.8% 0

I: DettDotConf Ol 70.0%
2: Det+DetConf 64,0%
3: Det+Class 85.0%
(e 7.0

Detector only

CLEAR MOT score:

<
T
L
o
=
=
>
a
s
o
i
b
o
o
5
2
E
3
o

52

B. Leibe

Computer Vision Il, Summer’14

Computer Vision I, Summer’14

Main Ideas

¢ Detector confidence particle filter
» Initialize particle cloud on
strong object detections.
» Propagate particles using
continuous detector confidence
as observation model.

¢ Disambiguate between
different persons
» Train a person-specific classifier
with online boosting.
» Use classifier output to distinguish
between nearby persons.

49
[Breitenstein, Reichlin, Leijbe et al,, ICCV’'09]

When Is Which Term Useful?

Discrete detections Detector confidence Classifier confiden;e
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Each Observation Term Increases Robustness!

Observation Model Terms  MOTP  MOTA

FPID Sw

1: Det+DetConf4 Class T0.0% 0.3% 0

(2 Det+ DetConf 64.0%
3: Det+ Class 65.0%
= Det 67.0%

Detector
+ Confidence

CLEAR MOT score:

53
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Each Observation Term Increases Robustness!
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Observation Model Terms  MOTP  MOTA FN

FPID Sw

1: Det+DetConf4 Class T0.0% T20%  26.8% 0.3%

0

2 Det+ DetConf 64.0% 25

(C3: DettClass 65.05%

1 Dot 67.0%

Computer Vision I, Summer’14

Qualitative Results
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Detector
+ Classifier
CLEAR MOT score:
54
B. Leibe
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References and Further Reading

¢ A good tutorial on Particle Filters

pp. 174-188, 2002.
¢ The CONDENSATION paper
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> M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2),

» M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998
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Each Observation Term Increases Robustness!
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Oservation Model Terms  MOTP  MOTA

FN FP 1D Sw

(C_1: Det+DetConf+Class 70.0%

2 Det+DetConf 64.0%
3 Det4 Class B5.0%
1 Dot 67.0%

0

0
10

Detector
+ Confidence
+ Classifier

B. Leibe

N

False negatives,

false positives,

and ID switches
decrease!

CLEAR MOT score:

55

Remaining Issues

* Some false positive initializations at wrong scales...
» Due to limited scale range of the person detector.
» Due to boundary effects of the person detector.
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