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Recap: Tracking-by-Detection

¢ Main ideas
~ Apply a generic object detector to find objects of a certain class
» Based on the detections, extract object appearance models
» Link detections into trajectories

Computer Vision I, Summer’14
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Recap: Object Detector Design

¢ In practice, the classifier often determines the design.
» Types of features
» Speedup strategies

e We’ll look at 3 state-of-the-art detector designs
» Based on SVMs
— Last lecture

» Based on Boosting
— Last lecture

» Based on Random Forests
— Postponed to a later slot...
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Course Outline

¢ Single-Object Tracking

» Background modeling

» Template based tracking

» Color based tracking

» Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

* Bayesian Filtering
» Kalman filter
» Particle filter

e Multi-Object Tracking

¢ Articulated Tracking

Image source: Helmut Grabner,

RWTH CHE
Recap: Sliding-Window Object Detection

Fleshing out this
pipeline a bit more,

we need to:

1. Obtain training data
2. Define features

3. Define classifier

& J
1

“,
1

Training examples

1]

—»| Car/non-car
Classifier

Feature
extraction

ide credit: Kristen Grauman B. Leibe
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Recap: Histograms of Oriented Gradients (HOG)

« Holistic object representation Object/ N°" object

» Localized gradient orientations

L1near SVM

Collect HOGs over
detecnon window

Contrast normahze over
overlapping spatlal cells

orientation cells
f
Compute gradients
T
Gamma compression

\ |
‘ Weighted vote in spatial & ‘
\ |
\ |

Image Window

ide adanted from Navpeet Dalal
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Recap: Deformable Part-based Model (DPM)

Score of filter:
dot product of filter
with HOG features

underneath it

Score of object
hypothesis is sum of
filter scores minus

FHH deformation costs
Image pyramid HOG feature pyramid

¢ Multiscale model captures features at two resolutions

Computer Vision Il, Summer’14

7
ide credit: Pedrg B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]
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Recap: Integral Channel Features

Gradient LUV color
n\agnltude channels

R

'?-.fi

* Generalization of Haar Wavelet idea from Viola-Jones

~ Instead of only considering intensities, also take into account
other feature channels (gradient orientations, color, texture).
» Still efficiently represented as integral images.

6 Orientation bins

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features,
BMVC’09.
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Recap: VeryFast Detector

¢ |dea 1: Invert the relation

50 models,
1 image scale

1 model,
50 image scales

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection
at 100 Frames per Second, CVPR’12.
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Recap: DPM Hypothesis Score

“data term” “spatial prior”

score(po, ... pa) =| 3 Fe - ¢(H, pi)| -3 di - (da?, dy?)

i=0 i=1 displacements

filters deformation parameters

score(z) = 3-V(H, z)

/N

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features

8
[Felzenszwalb, McAllister, Ramanan, CVPR’08]

ide credit: Pedro B. Leibe
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Recap: Integral Channel Features

LESE

* Generalize also block computation
» 15t order features:
- Sum of pixels in rectangular region.

» 2nd-order features:
- Haar-like difference of sum-over-blocks

» Generalized Haar:
- More complex combinations of weighted rectangles

» Histograms
- Computed by evaluating local sums on quantized images.

B. Leibe

Recap: VeryFast Detector

¢ |dea 2: Reduce training time by feature interpolation

5 models,
1 image scale

50 models,
1 image scale

¢ Shown to be possible for Integral Channel features

» P. Dollar, S. Belongie, Perona. The Fastest Pedestrian Detector
in the West, BMVC 2010.

ide adapted from Rodriog Benenson LA



http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf

T

6 Orientation bins

Recap: VeryFast Classifier Construction

Gradient
magnitude

RWTHAACHE

LUV color
channels

Elements of Tracking

Detection

¢ Detection

Data association

Prediction

Last lecture

» Where are candidate objects?

Computer Vision Il, Summer’14
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score =

wy - hy +

Slide credit: Rodrigo Bt

wy - hy +

B. Leibe

¢ Ensemble of short trees, learned by AdaBoost

+wy - hy

Today: Tracking with Linear Dynamic Models

o

B. Leibe

RWTHACHEN

15
Figure from Forsvth & Poncel
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Tracking with Dynamics

¢ Key idea

» Given a model of expected motion, predict
where objects will occur in next frame,

even before seeing the image.

¢ Goals

» Restrict search for the object

~ Improved estimates since measurement noise is reduced by

trajectory smoothness.

¢ Assumption: continuous motion patterns

» Camera is not moving instantly to new viewpoint.
» Objects do not disappear and reappear in different places.
» Gradual change in pose between camera and scene.

Slide adapted from

Lazebnik, K. Grauman

B. Leibe

¢ Data association
» Which detection corresponds to which object?

¢ Prediction Today’s topic
» Where will the tracked object be in the next time step?

Computer Vision Il, Summer’14
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Topics of This Lecture

¢ Tracking with Dynamics
» Detection vs. Tracking
» Tracking as probabilistic inference
» Prediction and Correction

¢ Linear Dynamic Models
» Zero velocity model
» Constant velocity model
» Constant acceleration model

¢ The Kalman Filter
» Kalman filter for 1D state
» General Kalman filter
» Limitations

Computer Vision Il, Summer’14

B. Leibe

General Model for Tracking

¢ Representation

» The moving object of interest is characterized by an underlying
state X.

State X gives rise to measurements or observations Y.
At each time ¢, the state changes to X, and we get a new

observation Y.

v

v
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ide credit: Svetlana | azebnik. B. Leibe




State vs. Observation

.
State variahlg

a
v

¢ Hidden state : parameters of interest
¢ Measurement: what we get to directly observe

Computer Vision Il, Summer’14

Slide credit: Kristen Grauman B. Leibe

Steps of Tracking

¢ Prediction: What is the next state of the object given
past measurements?

|:>()(t|Y0 =Yosee, Yy = yt—l)

¢ Correction: Compute an updated estimate of the state
from prediction and measurements.

P(X1|Yo = yO"“'Yt—l = yt—l'Yt = yt)

¢ Tracking can be seen as the process of propagating the
posterior distribution of state given measurements
across time.

Computer Vision I, Summer’14
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Tracking as Induction

¢ Base case:

» Assume we have initial prior that predicts state in absence of
any evidence: P(X)

-~ At the first frame, correct this given the value of Y =y,

P(¥o [ X6)P(X,)

<

s P(Xo 1Yo =Y,) = o P(Y, | X)P(X,)

£ P(¥o)

@

= Posterior prob. Likelihood of  Prior of

5 of state given measurement the state

2 measurement

-

3

-5

g

o

S 23
slide credit: Svetlana | azebnik B. Leibe

Tracking as Inference

¢ Inference problem

» The hidden state consists of the true parameters we care about,
denoted X.

» The measurement is our noisy observation that results from the
underlying state, denoted Y.

» At each time step, state changes (from X, to X,) and we get a
new observation Y,.

¢ Our goal: recover most likely state X, given
» All observations seen so far.
» Knowledge about dynamics of state transitions.

Computer Vision Il, Summer’14

ide credit: Kristen Grauman B. Leibe

Simplifying Assumptions
¢ Only the immediate past matters

P(X,[ Xy Xoy)=[P(X [ X,4)

Dynamics model

¢ Measurements depend only on the current state

P(YI‘XO’YO o XY, Xt): P(Yl‘xt)

Observation model

ide credit: Svetlana Lazebnik 8. Leibe

Computer Vision Il, Summer’14

Tracking as Induction

¢ Base case:

» Assume we have initial prior that predicts state in absence of
any evidence: P(X)

~ At the first frame, correct this given the value of Y=y,
¢ Given corrected estimate for frame ¢:

» Predict for frame ¢t+1

» Correct for frame t+1
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ide credit: Svetlana | azebnik. B. Leibe
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Induction Step: Prediction Induction Step: Prediction

e Prediction involves resxresenting P(X,\yo,..., yH)

« Prediction involves representing P(X,\yo,..., VH)
given P(XH\YO,---, Yiu SJ

given P(XH\YO,---, Yiu

P(Xz‘yov-'x YH)
= J. P(Xt' Xt—l‘yO""’ yt-l)dxt-l

Law of total probability

P(A)=[P(AB)dB

P(Xz‘yov-w YH)
=J.P(Xt' Xt—l‘yO""’ yt-l)dxt-l
=J.P(Xt I Xig0 Yoo-ees ytfl)P(Xt—l [ Yore-ms yt—l)dxtfl

Conditioning on X, ,
P(A,B):P(Al B)P(B)

Computer Vision Il, Summer’14
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Slide credit: Svetlana | azebnik B. Leibe

de credit: Svetlana lazebnik B. Leibe
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Induction Step: Prediction Induction Step: Correction
¢ Prediction involves reSJresenting P(Xl‘yo,..., yH)

¢ Correction involves computing P(Xl‘)so,..., y[)
given P(XH‘yo, o Ya

given predicted value P X,‘yo,,.., Yia

P(X Yor--or Y, )
P(Xt‘yol"'lytfl) t‘ ° '
_POIX Yoo Ve POX L Yoo Vo)
§ :jp(xtxXH‘Yovnw)’H)dXH i p(yt |yo'-~th71)
E E
£ =IP(X1 [ XYoo Ve PX s [ Yoreeo Ve JAX : Bayes rule
£ 2 o (a2 P ELAP(A
3 = I P(XI | Xt—1)P(th1 [Yor- s YH)dXH 2 T P(B)
E Independence assumption E
- 8. Leib 7 - ; 28
slide credit: Svetlana Lazebnik - Leibe ide credit: Svetlana | azebnik B. Leibe
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Induction Step: Correction Induction Step: Correction

¢ Correction involves computing P(XI\)SO,...,yI)

given predicted value P(X,|Y,,..., Y.

¢ Correction involves computing P(XI\)SO,...,yI)
1

given predicted value P(X,|y,,..., Y,

P(X[Yor-es Vi)

_POX Yoo Ve POX | Yoo Vo)
P(Y, [ Yoo Yer)
_ PO IXO)P(K Yoo Vi)
P(Y, [ Yoo - Yes)

Independence assumption
(observation y, depends only on state X;)

P(X[Yor-es¥i)

_ POX Yoo Ve POX | Yoo Vo)
PV | YoresVes)
_ PO IXO)P(X Yoo Vi)
PV Yores Vis)
PY I XP(X 1 Yos-s Vit
[P I XP(X | You--es Vi JX

Conditioning on X,
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T T
L L
o o
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Slide credit: Svetlana | azebnik LA

ide credit: Svetlana | azebnik. B. Leibe
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Summary: Prediction and Correction

RWTH/CET
Summary: Prediction and Correction

¢ Prediction: ¢ Prediction:

P(xt [ Yore-es yt—l): J.‘P(Xt | xtfl)P(xtf1 [ Yore-es yt—l)dxt—l
%/—/\;\/y

Dynamics  Corrected estimate

P(xt [ Yore-es yt—l): J.‘P(Xt | xt—l):)(xtfl [ Yoreees yt—l)dxt—l
Y —~

Dynamics  Corrected estimate

model from previous step model from previous step
by <
g =
E - « Correction: ) )
3 5| Observation Predicted
:~ : model estimate
s H —A /_/%
2 « ! \
> s
8 5 P(X Iy y)_ P(yt|Xt)P(X:|YOl"'IYI—1)
5 5 tlYore- Jt)—
g 8 PO I XPX, Yoo es V)X
S o
- 31 S 32

Slide credit: Svetlana | azebnik B. Leibe Slide credit: Svetlana | azebnik B. Leibe
RWTH CHE RWTH

Topics of This Lecture Notation Reminder

X~ N(p,X)

¢ Random variable with Gaussian probability distribution
that has the mean vector p and covariance matrix >.
* Linear Dynamic Models * x and p are d-dimensional, Y. is dxd.

» Zero velocity model

» Constant velocity model d=1

» Constant acceleration model o "~ | Ifxis 1D, we
| | just have one X
~ I | parameter:

the variance o2

Computer Vision Il, Summer’14
Computer Vision Il, Summer’14

B. Leibe B. Leibe

ide credit: Kristen Grauman
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Linear Dynamic Models Example: Randomly Drifting Points

¢ Dynamics model
~ State undergoes linear tranformation D, plus Gaussian noise

%~ N(Dx T, )

¢ Consider a stationary object, with state as position.
» Position is constant, only motion due to random noise term.

X =P P=Pyte
= State evolution is described by identity matrix D=1

nx1 X x1 _ fem H
e X = D,x_, +noise = Ip,_, + noise
< . <
;8 Observation model b
E » Measurement is linearly transformed state plus Gaussian noise E e ";Lf_‘
a a ‘G"'@ b
s ¥ N (MI)EQ T, ) 5 M g
g t i 2 g
5 mx1 mxn nx1 = £
£ E] LA
-5 o
£ £
3 3
35 . 36
Slide credit: S 1 azebnik K. Grauman B. Leibe ide credit: Kristen Grauman B. Leibe
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RWTH/CET
Example: Constant Velocity (1D Points)

Measurements

N . <
T
h 3
! : £
. Ef
. 5|
'\ @
States =
c
2
=
5
e
Q
8
2
time £
38

37

Slide credit: Kristen Grauman B. Leibe Figure from Forsyth & Poncel
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Example: Constant Acceleration (1D Points)

position

time

Computer Vision Il, Summer’14

40

B. Leibe Figure from Forsvth & Poncel

Slide credit: Kristen Grauman
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Example: Constant Velocity (1D Points)

¢ State vector: position p and velocity v
= (greek letters
_ P Py denote noise
X
VI

terms)
X, = DyX_4 + noise =
¢ Measurement is position only
Y, = Mx, +noise =
38
de credit: S | azebnik, K. Grauman B. Leibe
RWTH/CHEN

Example: Constant Acceleration (1D Points)

¢ State vector: position p, velocity v, and acceleration a.

P, P = Py +(AYV, +& (greek letters
_ denote noise
=% Ve = terms)

X, = DX, + noise =

¢ Measurement is position only

Y, = Mx, + noise =

4

ide credit: S, Lazebnik, K. Grauman

RWTH/ACHEN
Example: General Motion Models

¢ Assuming we have differential equations for the motion
» E.g. for (undampened) periodic motion of a pendulum

d’p
aw P
¢ Substitute variables to transform this into linear system
p=p p-2 9 =
' Podt P = o g
« Then we have 5
Py Py = Pra H (A Py, +E 1 At 0 E
X =| Pzy Py = Pars +(AL) Paiaté D=0 1 At §
P Py =—Pyat¢ -1 0 0 :;
o
o

43
B. Leibe

Topics of This Lecture

¢ The Kalman Filter
» Kalman filter for 1D state
» General Kalman filter
» Limitations

44
B. Leibe
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The Kalman Filter

¢ Kalman filter
» Method for tracking linear dynamical models in Gaussian noise

¢ The predicted/corrected state distributions are Gaussian
> You only need to maintain the mean and covariance.

» The calculations are easy (all the integrals can be done in closed
form).

45
Slide credit: Svetlana | azebnik B. Leibe

Kalman Filter for 1D State

Want to

PO[Yor- - Vis)= N (g, (07)7)
represent
and update P(>q|y0,..., yt): N(,u:,(of)z)

47
B. Leibe

RWTHAACHER
1D Kalman Filter: Prediction

¢ Have linear dynamic model defining predicted state
evolution, with noise

2
X, ~ N(dx,;,07)
¢ Want to estimate predicted distribution for next state

P(Xt|y0""’ yt—l): N(ﬂff(o';)z)
¢ Update the mean:
p = dug
¢ Update the variance:
(0,)" =05 +(doy,)*

Slide credit: Kristen Grauman LA

49
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The Kalman Filter

Know corrected state from
previous time step, and all
measurements up to the
current one

- Predict distribution over
next state.

Know prediction of state
and next measurement
->Update distribution
over current state.

Receive measurement

Time update
(“Predict”)

Measurement update
(“Correct”)

P(X,[Yor-ns Vo)

Mean and std. dev.
of predicted state:

My Oy

P(X,|Yor---%)

Mean and std. dev.
of corrected state:

+ +
K0

Time advances: t++

46

de credit: Kristen Grauman B. Leibe

RWTH/ACHEN
Propagation of Gaussian densities

ptx)

_/\ x
s
pix)

Shifting the mean

ochastic diffusion

VA

Bayesian combination~=tive effect of measurement Increasing the variance

ide credit: Svetlana Lazebnik
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RWTHAACHER
1D Kalman Filter: Correction

Have linear model defining the mapping of state to
measurements: Y, ~N (mx[ , oﬁ)

¢ Want to estimate corrected distribution given latest
measurement: 2
P(X,[Yor---r¥0) = N(e&", (07 )?)

¢ Update the mean: _ 2 N2
+ _HiOn +myt(o-t )

T o mie )
¢ Update the variance:
27 _—\2
(O_+)2 — O-m (O-t )
t 2 2/ _—\2
on+m(oy)
ide credit: Kristen Grauman B. Leibe Derivations: F&P Chanter ]520
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Prediction vs. Correction Recall: Constant Velocity Example
- 2 -\2 2 —\2
+ M Onm +myt (O-t ) (O_+)2 _ O-m(o-t )
He = 2 mz( 7)2 t - 2 mz( 7)2
o+ o, o+ o, . .
 What if there is no prediction uncertainty (o, =0)? - | measurements ) L ’
H S o .
- \2 _ S .

b He =t (Gt ) =0 :H : .
£ The measurement is ignored! £ ° ey *e
£ £ N
@ @ * state
=+ What if there is no measurement uncertainty (o,, = 0)? H
o i
S Y +12 S : - CE
5 /th = (O-t ) = 0 E time
2 m 2 State is 2D: position + velocity
5 The prediction is ignored! § Measurement is 1D: position

ide credit: Kristen Grauman B. Leibe > ide credit: Kristen Grauman B. Leibe Figure from Forsyth & Poncel

Constant Velocity Model Constant Velocity Model

o state o state

X measurement X measurement

* predicted mean estimate * predicted mean estimate

+ corrected mean estimate + corrected mean estimate

20
1 deH
= y : tH . i i = . i i
h ! f bars: variance estimates 3 bars: variance estimates
o A4 §
E E ! before and after E before and after
10 L1 ; 10
£ i i P measurements = measurements
> [ 3>
7] t 7]
= 5 = st
5 ‘ 5
2 LS 3
> ¢ b of
= s
3 3
o £ ! . o £
£ 0 5 0 5 E 2 £ 0 2
o o

53
Figure from Forsvth & Poncel

54

ide credit: Kristen Grauman B. Leibe Fioure from Forsvth & Ponce

ide credit: Kristen Grauman B. Leibe

Constant Velocity Model Constant Velocity Model

o state o state

X measurement X measurement

ide credit: Kristen Grauman LA

* predicted mean estimate

+ corrected mean estimate

Eigure from Forsyth & Poncel

3 bars: variance estimates 3 bars: variance estimates
E o before and after g o before and after
£ measurements £ measurements

> 3

7] 7]

= § = 5

< <

S o

s s

= o

2 2

3 3

-5 5 o 5

£ 0 ] £ 0 ]

o o

o o

ide credit: Kristen Grauman LA

* predicted mean estimate

+ corrected mean estimate

Eigure from Forsvth & Poncel
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Kalman Filter: General Case (>1dim)

¢ What if state vectors have more than one dimension?

PREDICT#” ‘ CORRECT

K =M (MM +2, )

- +
X =D
| “residfial”

% =DE,D +5,

Less weight on residual as

'More weight on residual
when measurement error
covariance approaches 0.
a priori estimate error
see F&P Chapter 17.3 N
covariance approaches 0.

Computer Vision Il, Summer’14

Slide credit: Kristen Grauman B. Leibe 57
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Why Is This A Restriction?

¢ Many interesting cases don’t have linear dynamics
» E.g. pedestrians walking

» E.g. a ball bouncing

Computer Vision I, Summer’14

B. Leibe
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References and Further Reading

¢ A very good introduction to tracking with linear dynamic
models and Kalman filters can be found in Chapter 17 of

» D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003
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Summary: Kalman Filter

* Pros:
» Gaussian densities everywhere
» Simple updates, compact and efficient
» Very established method, very well understood

e Cons:

» Unimodal distribution, only single hypothesis
» Restricted class of motions defined by linear model

ide adapted from Svetlana | azebnik B. Leibe

Ball Example: What Goes Wrong Here?
¢ Assuming constant acceleration model
Prediction ¢,

Prediction t,
¢ Prediction is too far

from true position to Prediction £
compensate...
Correct
e Possible solution: prediction

Keep multiple models
» Keep multiple different
motion models in parallel

» l.e. would check for
bouncing at each time step

Prediction lr,@

B. Leibe
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