Computer Vision II - Lecture 7

Tracking by Detection

15.05.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
Course Outline

• Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Color based tracking
 - Contour based tracking
 - Tracking by online classification
 - Tracking-by-detection

• Bayesian Filtering

• Multi-Object Tracking

• Articulated Tracking

Image source: Helmut Grabner, Disney/Pixar
Today: Tracking by Detection

Object detections

Spacetime trajectories
Recap: Tracking as Online Classification

- Tracking as binary classification problem

object vs. background

Image source: Disney /Pixar

Slide credit: Helmut Grabner
Recap: Tracking as Online Classification

- Tracking as binary classification problem

- Handle object and background changes by online updating

Slide credit: Helmut Grabner

Image source: Disney /Pixar
Recap: AdaBoost - “Adaptive Boosting”

• Main idea
 - Iteratively select an ensemble of classifiers
 - Reweight misclassified training examples after each iteration to focus training on difficult cases.

• Components
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x) \): “strong” or final classifier

• AdaBoost:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

\[
H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
\]
Recap: AdaBoost - Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations

 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)
 \]

 b) Estimate the weighted error of this classifier on X:
 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}
 \]

 c) Calculate a weighting coefficient for $h_m(x)$:
 \[
 \alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}
 \]

 d) Update the weighting coefficients:
 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(x_n) \neq t_n)\}
 \]
Recap: From Offline to Online Boosting

• Main issue
 - Computing the weight distribution for the samples.
 - We do not know a priori the difficulty of a sample! (Could already have seen the same sample before...)

• Idea of Online Boosting
 - Estimate the importance of a sample by propagating it through a set of weak classifiers.
 - This can be thought of as modeling the information gain w.r.t. the first \(n \) classifiers and code it by the importance weight \(\lambda \) for the \(n+1 \) classifier.
 - Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of \(N \to \infty \) iterations.

Recap: From Offline to Online Boosting

off-line

Given:
- set of labeled training samples
 \(\mathcal{X} = \{\langle x_1, y_1 \rangle, \ldots, \langle x_L, y_L \rangle \mid y_i \pm 1 \} \)
- weight distribution over them
 \(D_0 = 1/L \)

for \(n = 1 \) to \(N \)
- train a weak classifier using samples and weight dist.
 \(h_{n}^{weak}(x) = \mathcal{L}(\mathcal{X}, D_{n-1}) \)
- calculate error \(e_n \)
- calculate weight \(\alpha_n = f(e_n) \)
- update weight dist. \(D_n \)
 next

\(h^{strong}(x) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_{n}^{weak}(x)) \)

on-line

Given:
- ONE labeled training sample
 \(\langle x, y \rangle \mid y \pm 1 \)
- strong classifier to update
- initial importance \(\lambda = 1 \)

for \(n = 1 \) to \(N \)
- update the weak classifier using samples and importance
 \(h_{n}^{weak}(x) = \mathcal{L}(h_{n}^{weak}, \langle x, y \rangle, \lambda) \)
- update error estimation \(\tilde{e}_n \)
- update weight \(\alpha_n = f(\tilde{e}_n) \)
- update importance weight \(\lambda \)
 next

\(h^{strong}(x) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_{n}^{weak}(x)) \)

Slide credit: Helmut Grabner
Recap: Online Boosting for Feature Selection

- Introducing “Selector”
 - Selects one feature from its local feature pool

 \[
 \mathcal{H}^{weak} = \{h_1^{weak}, \ldots, h_M^{weak}\} \\
 \mathcal{F} = \{f_1, \ldots, f_M\} \\
 h^{sel}(x) = h_m^{weak}(x) \\
 m = \arg \min_i e_i
 \]

On-line boosting is performed on the Selectors and not on the weak classifiers directly.

H. Grabner and H. Bischof.
On-line boosting and vision.
Recap: Direct Feature Selection

- **Shared feature pool for all selectors to save computation**

Slide credit: Helmut Grabner
Recap: Tracking by Online Classification

- From time t to $t+1$
- Evaluate classifier on sub-patches
- Search region
- Create confidence map
- Analyze map and set new object position
- Update classifier (tracker)
- Actual object position
- Image source: Disney /Pixar

Slide credit: Helmut Grabner
Recap: Self-Learning and Drift

- **Drift**
 - Major problem in all adaptive or self-learning trackers.
 - Difficulty: distinguish “allowed” appearance changes due to lighting or viewpoint variation from “unwanted” appearance change due to drifting.
 - Cannot be decided based on the tracker confidence!

- **Several approaches to address this**
 - Comparison with initialization
 - Semi-supervised learning (additional data)
 - Additional information sources
Topics of This Lecture

• Tracking by Detection
 ➢ Motivation
 ➢ Recap: Object detection

• SVM based Detectors
 ➢ Recap: HOG
 ➢ DPM

• AdaBoost based Detectors
 ➢ Recap: Viola-Jones
 ➢ Integral Channel features
 ➢ VeryFast/Roerei

• Random Forest based Detectors
 ➢ Recap: ISM
 ➢ Hough Forests
Detection-Based Tracking

Main ideas

- Apply a generic object detector to find objects of a certain class
- Based on the detections, extract object appearance models
 - Even possible to derive figure-ground segmentations from detection results
- Link detections into trajectories
Tracking-by-Detection in 3D

Object detections

3D Camera path estimation

Spacetime trajectories

Main Issue: Data Association
(We’ll come to that...)

Simple f/g model:
E.g., elliptical region in detection box

[Leibe, Cornelis, Schindler, Van Gool, PAMI’08]
Spacetime Trajectory Analysis

Pedestrian detection

Car detections

Own vehicle

[Leibe, Cornelis, Cornelis, Van Gool, CVPR’07]
Elements of Tracking

- Detection
 - Where are candidate objects?

- Data association
 - Which detection corresponds to which object?

- Prediction
 - Where will the tracked object be in the next time step?

Today’s topic
Recap: Sliding-Window Object Detection

- Basic component: a binary classifier
Recap: Sliding-Window Object Detection

- If object may be in a cluttered scene, slide a window around looking for it.

- Essentially, this is a brute-force approach with many local decisions.

Slide credit: Kristen Grauman
What is a Sliding Window Approach?

- Search over space and scale

- Detection as subwindow classification problem

- “In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search.”
Recap: Non-Maximum Suppression

After multi-scale dense scan

Goal

Fusion of multiple detections

Clip detection score

Map each detection to 3D \([x,y,\text{scale}]\) space

Apply robust mode detection, \textit{e.g.} mean shift

Non-maximum suppression

Image source: Navneet Dalal, PhD Thesis
Recap: Sliding-Window Object Detection

Fleshing out this pipeline a bit more, we need to:

1. Obtain training data
2. Define features
3. Define classifier
Object Detector Design

• In practice, the classifier often determines the design.
 - Types of features
 - Speedup strategies

• Today, we’ll look at 3 state-of-the-art detector designs
 - Based on SVMs
 - Based on Boosting
 - Based on Random Forests
Topics of This Lecture

• Tracking by Detection
 ➢ Motivation
 ➢ Recap: Object detection

• SVM based Detectors
 ➢ Recap: HOG
 ➢ DPM

• AdaBoost based Detectors
 ➢ Recap: Viola-Jones
 ➢ Integral Channel features
 ➢ VeryFast/Roerei

• Random Forest based Detectors
 ➢ Recap: ISM
 ➢ Hough Forests
Recap: Histograms of Oriented Gradients (HOG)

- Holistic object representation
 - Localized gradient orientations
 \[
 \left[\ldots, \ldots, \ldots, \ldots \right]
 \]

Slide adapted from Navneet Dalal
Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[w^T x + b = 0 \]

- Formulation as a convex optimization problem
 - Find the hyperplane satisfying
 \[\arg\min_{w,b} \frac{1}{2} \|w\|^2 \]
 under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).
Recap: Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

\[y(x) = w^T x + b \]

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Slide credit: Svetlana Lazebnik
Pedestrian detection with HoGs & SVMs

- N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR’05

Slide credit: Kristen Grauman
Extensions and Improvements(?)

- Choice of evaluation criterion is critical!
 - Traditional evaluations on per-window classification.
 - [Dollar et al.,’09]: *None* of the methods proposed from 2004-2009 brought an improvement for the actual detection task!

(a) INRIA per-window results.
(b) INRIA per-image results.
Some Extensions that Did Survive…

- **HOG + LBP**
 - Compute LBP histograms over cells, as in HOG
 - Features seem to be complementary to some degree
 - Ojala & Pietikäinen 1999, Wang et al. ‘09

- **HOG + Depth + Flow**
 - For applications in intelligent vehicles where those are available
 - Factor 40 reduction in false positives possible
 - Wojek et al. 2010, Gavrila 2012

- **HIK-SVM**
 - Apply non-linear SVM kernels at reduced cost
 - Maji et al. 2008

- **Explicit Feature Maps**
 - Same as above, but on steroids
 - Vedaldi & Zisserman 2010, ‘12
Incorporating Ground Plane Constraints

- Efficient integration into detector design (**groundHOG**)
 - Idea: only evaluate geometrically valid detection windows
 - Derivation: Region of interest lies between two parabolas...
 - ...that can in most cases be approximated by straight lines.
 ⇒ Only touch pixels inside the ROI for all computations.
 ⇒ Factor 2-4 speed improvement on top of all other optimizations

[P. Sudowe, B. Leibe, ICVS’11]
Real-Time Pedestrian Detection

- Efficient CUDA HOG implementation (equivalent to original HOG code)
- Code made publicly available as open source under GPL
- Run-time comparison:

<table>
<thead>
<tr>
<th>run-time</th>
<th>1280 × 960</th>
<th></th>
<th>640 × 480</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cuda</td>
<td>ground</td>
<td>cuda</td>
<td>ground</td>
</tr>
<tr>
<td>Laptop GTX 285M</td>
<td>1.6 fps</td>
<td>9.6 fps</td>
<td>7.2 fps</td>
<td>26 fps</td>
</tr>
<tr>
<td>Desktop GTX 280</td>
<td>5.5 fps</td>
<td>17.2 fps</td>
<td>22.7 fps</td>
<td>56 fps</td>
</tr>
<tr>
<td>Desktop GTX 580</td>
<td>9.8 fps</td>
<td>27.8 fps</td>
<td>41.6 fps</td>
<td>83 fps</td>
</tr>
</tbody>
</table>

⇒ Detection at video frame rate possible even on laptops with mobile GPUs!
You Can Try It At Home...

- groundHOG GPU detector code publicly available
 - Highly optimized for speed
 - Can be used with or without ground plane constraints
 - Supports general ROI processing
 - Supports multi-class detection with feature sharing
 - Published under GPL license (other licensing negotiable)

- http://www.vision.rwth-aachen.de/projects/groundhog

P. Sudowe, B. Leibe, *Efficient Use of Geometric Constraints for Sliding Window Object Detection in Video*, ICVS 2011
Topics of This Lecture

• Tracking by Detection
 ➢ Motivation
 ➢ Recap: Object detection

• **SVM based Detectors**
 ➢ Recap: HOG
 ➢ DPM

• **AdaBoost based Detectors**
 ➢ Recap: Viola-Jones
 ➢ Integral Channel features
 ➢ VeryFast/Roerei

• **Random Forest based Detectors**
 ➢ Recap: ISM
 ➢ Hough Forests
Recap: Part-Based Models

- Pictorial Structures model
 - [Fischler & Elschlager 1973]

- Model has two components
 - Parts (2D image fragments)
 - Structure (configuration of parts)

- Use in Deformable Part-based Model (DPM)
 - Parts \(\equiv \) 5-7 semantically meaningful parts
 - Probabilistic model enabling efficient inference
Starting Point: HOG Sliding-Window Detector

- Array of weights for features in window of HOG pyramid
- Score is dot product of filter and vector

Filter F

Score of F at position p is $F \cdot \phi(p, H)$

$\phi(p, H) = \text{concatenation of HOG features from window specified by } p.$
Deformable Part-based Models

- Mixture of deformable part models (Pictorial Structures)
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone

[Slide credit: Pedro Felzenszwalb]
2-Component Bicycle Model

Root filters
coarse resolution

Part filters
finer resolution

Deformation models

Slide credit: Pedro Felzenszwalb

B. Leibe

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Object Hypothesis

Multiscale model captures features at two resolutions

Score of object hypothesis is sum of filter scores minus deformation costs

Score of filter: dot product of filter with HOG features underneath it

Image pyramid

HOG feature pyramid

Slide credit: Pedro Felzenszwalb

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Score of a Hypothesis

\[
\text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)
\]

- "data term"
- "spatial prior"
- filters
- displacements
- deformation parameters

\[
\text{score}(z) = \beta \cdot \Psi(H, z)
\]

- concatenation filters and deformation parameters
- concatenation of HOG features and part displacement features

Slide credit: Pedro Felzenszwalb

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Recognition Model

\[f_w(x) = w \cdot \Phi(x) \]

\[f_w(x) = \max_z w \cdot \Phi(x, z) \]

- **Difference to standard HOG model**
 - Hidden variable \(z \): vector of part offsets
 - \(\Phi(x, z) \): vector of HOG features (from root filter & appropriate part sub-windows) and part offsets
 \[\Rightarrow \text{Need to optimize over all possible part positions} \]

Slide adapted from Pedro Felzenszwalb

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
feature map

model

feature map at twice the resolution

response of part filters

transformed responses

color encoding of filter response values

combined score of root locations

B. Leibe

Slide credit: Pedro Felzenszwalb
Results: Persons

- Results (after non-maximum suppression)
 - ~1s to search all scales

Slide credit: Pedro Felzenszwalb

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Results: Bicycles

Slide adapted from Trevor Darrell

B. Leibe

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Extensions and Detailed Improvements

• More efficient features
 ➢ Very simplified version of HOG

• Latent part (re-)learning
 ➢ Perform several rounds of training, adapting the annotation bboxes

• Multi-aspect detection
 ➢ Mixture model of different aspects to capture different viewpoints of objects

• Bounding box prediction
 ➢ Infer final detection bounding box from detected part locations

• Multi-resolution models

• Cascaded evaluation

Felzenszwalb, McAllister, Ramanan, PAMI’10
You Can Try It At Home...

- Deformable part-based models have been very successful at several recent evaluations.
 \[\Rightarrow\] One of the state-of-the-art approaches in object detection

- Source code and models trained on PASCAL 2006, 2007, and 2008 data are available here:
 \[
 \text{http://www.cs.uchicago.edu/~pff/latent}
 \]
Topics of This Lecture

• Tracking by Detection
 - Motivation
 - Recap: Object detection

• SVM-based Detectors
 - Recap: HOG
 - DPM

• AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei

• Random Forest based Detectors
 - Recap: ISM
 - Hough Forests
Recap: Viola-Jones Face Detector

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]

Slide credit: Kristen Grauman
Recap: Haar Wavelets

“Rectangular” filters

Feature output is difference between adjacent regions

Value at \((x,y)\) is sum of pixels above and to the left of \((x,y)\)

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images ⇒ Scale features directly for same cost

\[
D = 1 + 4 - (2 + 3) = A + (A + B + C + D) - (A + C + A + B) = D
\]

Integral image

Slide credit: Kristen Grauman

[Viola & Jones, CVPR 2001]
AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this feature is a simple function of error rate
 - Reweight examples

Recap: Cascading Classifiers for Detection

- Even if the filters are fast to compute, each new image has a lot of possible windows to search...

- **Idea: Classifier cascade**
 - Observation: most image windows are negative and look very different from the searched object class.
 - Filter for promising regions with an initial inexpensive classifier
 - Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

[Fleuret & Geman, IJCV’01; Rowley et al., PAMI’98; Viola & Jones, CVPR’01]
Viola-Jones Face Detector: Results
You Can Try It At Home...

- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/

- Matlab wrappers for OpenCV code available, e.g. here

P. Viola, M. Jones, [Robust Real-Time Face Detection](http://www.cs.cmu.edu/~abanerjee/Projects/face_detection/robust_realtime_face_detection.pdf), IJCV, Vol. 57(2), 2004

Slide credit: Kristen Grauman
Topics of This Lecture

• Tracking by Detection
 - Motivation
 - Recap: Object detection

• SVM-based Detectors
 - Recap: HOG
 - DPM

• AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei

• Random Forest based Detectors
 - Recap: ISM
 - Hough Forests
Integral Channel Features

- Generalization of Haar Wavelet idea from Viola-Jones
 - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
 - Still efficiently represented as integral images.

Integral Channel Features

- Generalize also block computation
 - 1st order features:
 - Sum of pixels in rectangular region.
 - 2nd-order features:
 - Haar-like difference of sum-over-blocks
 - Generalized Haar:
 - More complex combinations of weighted rectangles
 - Histograms
 - Computed by evaluating local sums on quantized images.
Results: Integral Channel Features

 - fastHOG
 - ~10 Hz on GPU
 - [Prisacariu 2009]
- Felzenszwalb (2008)
 - DPM
 - [Felzenszwalb 2008]
- Dollar (2009+2010)
 - ChnFtrs/FPDW
 - ~5 Hz on CPU
 - [Dollar 2009+2010]

Slide credit: Rodrigo Benenson
Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM-based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- Random Forest based Detectors
 - Recap: ISM
 - Hough Forests
INRIA dataset

VeryFast 50 Hz

Slide credit: Rodrigo Benenson
Issues for Efficient Detection

• One template cannot detect at multiple scales...
Issues for Efficient Detection

- Typically, features are computed many times

~50 scales

Slide credit: Rodrigo Benenson

B. Leibe
Issues for Efficient Detection

- Typically, features are computed many times
VeryFast Detector

- Idea 1: Invert the relation

Slide credit: Rodrigo Benenson
Practical Considerations

- Training and running 1 model/scale is too expensive
VeryFast Detector

• Idea 2: Reduce training time by feature interpolation

5 models, 1 image scale

≈

50 models, 1 image scale

• Shown to be possible for Integral Channel features
VeryFast Detector

- Effect: Transfer test time computation to training time

⇒ Result: 3x reduction in feature computation
VeryFast: Classifier Construction

- Ensemble of short trees, learned by AdaBoost

\[score = w_1 \cdot h_1 + \]

Slide credit: Rodrigo Benenson
VeryFast: Classifier Construction

- Ensemble of short trees, learned by AdaBoost

\[\text{score} = w_1 \cdot h_1 + w_2 \cdot h_2 + \]

Slide credit: Rodrigo Benenson
VeryFast: Classifier Construction

- Ensemble of short trees, learned by AdaBoost

\[\text{score} = w_1 \cdot h_1 + w_2 \cdot h_2 + \ldots + w_N \cdot h_N \]

Slide credit: Rodrigo Benenson
Learned Models

Integral Channel features

Models

Slide adapted from Rodrigo Benenson
Results

- Detection without resizing provides quality

Slide adapted from Rodrigo Benenson
Multi-Scale Models > Single-Scale Model

Slide adapted from Rodrigo Benenson
Comparison to State-of-the-Art

• **Extension: Roerei detector**
 - Detailed evaluation of design space
 - Non-regular pooling regions found to work best.

Slide adapted from Rodrigo Benenson
Roerei Results

Applications: Mobile Robot Navigation

link to the video
Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection

- SVM-based Detectors
 - Recap: HOG
 - DPM

- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei

- Random Forest based Detectors
 - Recap: ISM
 - Hough Forests
Recap: Implicit Shape Model (ISM) Idea

- Visual vocabulary is used to index votes for object position [a visual word = “part”].

Recap: Implicit Shape Model (ISM) Idea

- Objects are detected as consistent configurations of the observed parts (visual words).

Test image

Recap: ISM - Representation

- Learn appearance codebook
 - Extract local features at interest points
 - Feature clustering \(\Rightarrow\) codebook

- Learn spatial distributions
 - Match codebook to training images
 - Record matching positions on object

Training images
(+reference segmentation)

Appearance codebook

Spatial occurrence distributions
+ local figure-ground labels
Recap: ISM - Recognition

Interest Points → Matched Codebook Entries → Probabilistic Voting

Image Feature → Interpretation (Codebook match) → Object Position

\[f \rightarrow C_i \rightarrow o,x \]

\[p(C_i|f) \rightarrow p(o_n, x|C_i, \ell) \]

Probabilistic vote weighting

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Recap: ISM - Recognition

- Interest Points
- Matched Codebook Entries
- Probabilistic Voting

3D Voting Space (continuous)

Backprojected Hypotheses

Backprojection of Maxima

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Recap: ISM - Top-Down Segmentation

Interest Points

Matched Codebook Entries

Probabilistic Voting

Segmentation

$p(figure)$ Probabilities

Backprojected Hypotheses

Backprojection of Maxima

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Class-Specific Top-Down Segmentation

• During initial Hough Voting
 - When we first observe a feature, we do not know its context.
 - Different figure-ground labels may be consistent with the appearance.
 ⇒ Strategy: we cast votes for many locations...

• After voting
 - Voting groups features that are consistent with the same object.
 - We can now consider each feature conditioned on the selected object location hypothesis.
 - This allows us to backproject a local figure-ground label from selected votes.

B. Leibe
Top-Down Segmentation

- Interpretation of $p(\text{figure})$ map
 - per-pixel confidence in object hypothesis
 - Useful for hypothesis verification

Original image

$p(\text{figure})$

$p(\text{ground})$

Segmentation

$p(\text{figure})$

$p(\text{ground})$

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Recap: ISM - Example Results

[Leibe, Leonardis, Schiele, SLCV’04; IJCV’08]
Topics of This Lecture

• Tracking by Detection
 ➢ Motivation
 ➢ Recap: Object detection

• SVM-based Detectors
 ➢ Recap: HOG
 ➢ DPM

• AdaBoost based Detectors
 ➢ Recap: Viola-Jones
 ➢ Integral Channel features
 ➢ VeryFast/Roerei

• Random Forest based Detectors
 ➢ Recap: ISM
 ➢ Hough Forests
Hough Forest Object Detector

- Combine idea of ISM-style Hough voting with dense feature sampling and discriminative training.
 - Randomized forest classifier densely processes image patches
 - Leaf nodes correspond to visual words
 - Cast votes for possible object hypotheses
- Good empirical performance, fast to evaluate

[Source: Gall, CVPR’09]
Fast Dense Matching with Random Forests

• Ideas
 - Solve feature extraction and codebook matching at the same time
 - Discriminative training of codebook features

• Extremely simple features
 - 2-pixel comparisons in different feature channels
 - Evaluation sub-linear in patch size

• Tree construction
 - Each leaf node contains occurrence distribution for Hough Voting
 - Training goal: Minimize class entropy while keeping distributions compact
Multi-View Extension

- **Random Forests are implicitly multi-class capable**
 - Create multi-class tree with per-class occurrence distributions
 - Use one Hough space per class or viewpoint
 - Necessary: multi-class non-maximum suppression

[Razavi, Alvar, Gall, van Gool, CVPR’11; Rematas, Leibe, CORP’11]
Top-Down Segmentation with Hough Forests

- Extend HFs with top-down segmentation mechanism
- Better results than for ISM due to dense sampling

[Rematas, Leibe, CORP’11]
HF-ISM: Qualitative Results

• Observations
 - Improved detection performance compared to original HF (competitive with HOG + HIKSVM on pedestrians).
 - Better segmentations than original ISM due to dense sampling.

(no ground plane constraints used)
You Can Try All of This At Home...

- Detector code is publicly available
 - HOG: Dalal’s original implementation: http://www.navneetdalal.com/software/
 - Our CUDA-optimized groundHOG code (>80 fps on GTX 580): http://www.mmp.rwth-aachen.de/projects/groundhog
 - DPM: Felzenswalb’s original implementation: http://www.cs.uchicago.edu/~pff/latent
 - ISM: My original implementation: http://www.vision.rwth-aachen.de/software/ism
 - HF: Gall’s original implementation: http://www.vision.ee.ethz.ch/~gallju/index.html#software
 - VeryFast: Benenson’s original implementation: https://bitbucket.org/rodrigob/doppia/