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Today: Tracking by Detection
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Object detections Spacetime trajectories
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Recap: Tracking as Online Classification

¢ Tracking as binary classification problem
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» Handle object and background changes by online updating

ide credit; Helmut Grabner LA Image source: Disney /Pixa

Course Outline

¢ Single-Object Tracking
» Background modeling
» Template based tracking
» Color based tracking
» Contour based tracking
» Tracking by online classification

E . Tracking-by-detection = Y
@ - ¥
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1 * Bayesian Filtering B

E  Multi-Object Tracking o
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Image source: Helmut Grabner,

Recap: Tracking as Online Classification

¢ Tracking as binary classification problem

object
vs.
background
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Image source: Disney /Pixa

Slide credit; Helmut Grabner B. Leibe

Recap: AdaBoost - “Adaptive Boosting” ‘

¢ Main idea [Freund & Schapire, 1996]
» lteratively select an ensemble of classifiers

» Reweight misclassified training examples after each iteration
to focus training on difficult cases.

¢ Components
» h,(x): “weak” or base classifier

- Condition: <50% training error over any distribution
» H(x): “strong” or final classifier

¢ AdaBoost:

» Construct a strong classifier as a thresholded linear combination
of the weighted weak classifiers:

M
H(x) = sign <Z amhm(x)>
m=1

B. Leibe
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Recap: AdaBoost - Algorithm

ses s . 1
1. Initialization: Set »(") = ¥ forn=1,...,N.
2. For m=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
- (m) T R
I = 3l () # ) I {“ i
b) Estimate the weighted error of this classifier on X:
Loy 0l I () # t)

c) Calculate a weighting coefficient for h,,(x):

€m =

1—én
oy =In ¢ ——
€m

d) Update the weighting coefficients:
" = wl™ exp{am (hin(xn) # tn)}
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Recap: From Offline to Online Boosting
off-line on-line
Given: Given:

- set of labeled training samples - ONE labeled training sample

X = {{x0,¥1)se0r (XL yr) | 33 £ 1} oy lywtl

- weight distribution over them - strong classifier to update

Dy=1/L

- initial importance A =1
B forn=1toN forn=1toN
T - train a weak classifier using - update the weak classifier using
g samples and weight dist. samples and importance
E hgenk(x) = £L(X, Dy_1) heak(x) = L0k, (o, y), A)
@ - calculate error ©n - update error estimation fn
= - calculate weight fin = [(en) - update weight ttn = [(in)
H - update weight dist. [l - update importance weight
§ next next
e
] N . N
= AT (x) = sign( 3 an - iR (X)) RTE(x) = sign( 3 o - hEF(x))
3 n=1 n=1
o
) 9
Slide credit; Helmut Grabner B. Leibe

Recap: Direct Feature Selection

#HAOPO - OO0  ©]

gloabal feak classifer pool
hSelector; hSelector, electon,

estimate estimate estimate
errors. errors errors.
inital estimate estimate
importance ™| selectbest [~ importance | selectbest [ importance ™| select best
=1 weak 3 3 . weak
classifier classifier classifier

2

repeat for each ‘

wainingsample current strong classifier hStrong ‘
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¢ Shared feature pool for all selectors to save computation
1

ide credit: Helmut Grabner B. Leibe

RWTH/CET
Recap: From Offline to Online Boosting

¢ Main issue
» Computing the weight distribution for the samples.

» We do not know a priori the difficulty of a sample!
(Could already have seen the same sample before...)

¢ Idea of Online Boosting

» Estimate the importance of a sample by propagating it through
a set of weak classifiers.
This can be thought of as modeling the information gain w.r.t.
the first n classifiers and code it by the importance weight \ for
the n+1 classifier.

v

v

Proven [Oza]: Given the same training set, Online Boosting
converges to the same weak classifiers as Offline Boosting in the
limit of N — oo iterations.

N. Oza and S. Russell. Online Bagging and Boosting.
Artificial Intelligence and Statistics, 2001.

Computer Vision Il, Summer’14
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Recap: Online Boosting for Feature Selection
. hSelector
¢ Introducing “Selector”
» Selects one feature from its local @
feature pool
Hil‘v‘-‘ﬂk — {hmsa.k hweuk}
= {hYyeak, . hYy
F={f1,e fua}
o h.\-(’l(x) — h}‘,’f"k(x) %
E] m = arg min; e;
£
E
@
=3 | On-line boosting is performed on
5 the Selectors and not on the @
e weak classifiers directly.
g
2 H. Grabner and H. Bischof.
5 On-line boosting and vision.
C _ CVPR, 2006. 10
Slide credit; Helmut Grabner B. Leibe
RWTH ACHET

Recap: Tracking by Online Classification

Evaluate classifier
on sub-patches

from time ¢ to {+1

Actual
bject position
- 2
=)
Ve
E R
I Update classifier Analyze map and set

(tracker) new object position Create

confidence map
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ide credit; Helmut Grabner LA Image source: Disney /Pixa



http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf
http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/CVPR.2006.215
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Recap: Self-Learning and Drift

e Drift
» Major problem in all adaptive or self-learning FEETEERT
trackers.
» Difficulty: distinguish “allowed” appearance
changes due to lighting or viewpoint variation
from “unwanted” appearance change due to FEEFREEE
drifting. Tracked Patches
» Cannot be decided based on the tracker
confidence! 8
b
_ P
* Several approaches to address this ]
» Comparison with initialization -
» Semi-supervised learning (additional data) Confidence
~ Additional information sources
13
B. Leibe

Detection-Based Tracking

¢ Main ideas
~ Apply a generic object detector to find objects of a certain class
» Based on the detections, extract object appearance models

- Even possible to derive figure-ground segmentations from
detection results

» Link detections into trajectories

B. Leibe
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Spacetime Trajectory Analysis

Pedestrian detection

0 / 1
5 {
o 1

2 10 ] o E] £l w®

Car detections Own vehicle
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B. Leibe [Leibe, Cornelis, Cornelis, Van Gool, CVPR’07

S, LOMENS, SOMENS, Jan ooy, LR o/

Topics of This Lecture

¢ Tracking by Detection
» Motivation
» Recap: Object detection

e SVM based Detectors

» Recap: HOG
~ DPM

AdaBoost based Detectors
» Recap: Viola-Jones
» Integral Channel features
» VeryFast/Roerei

* Random Forest based Detectors
» Recap: ISM
» Hough Forests

Computer Vision Il, Summer’14
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Tracking-by-Detection in 3D

FEFETT

I =
il —
3D Camera path
estimation =

sRERFEEFE

x R z
Spacetime trajectories

—

Main Issue:
Data Association
(We’ll come to that...)

Object detections

Simple f/g model:

E.g., elliptical region
“in detection box

Computer Vision I, Summer’14
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[Leibe, Cornelis, Schindler, Van Gool, PAMI’081

RWTH/ACHEN
Elements of Tracking
-~ AN
. S o
o °
Detection Data association Prediction

¢ Detection

» Where are candidate objects? Today’s topic
¢ Data association
» Which detection corresponds to which object?

¢ Prediction
» Where will the tracked object be in the next time step?
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RWTH/CET
Recap: Sliding-Window Object Detection

RWTH/CET
Recap: Sliding-Window Object Detection

¢ Basic component: a binary classifier

« If object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car

= s Car/non-car
5 Classifier 5 Classifier
@ l @
= z
i NoYemtcarcar. g
S S
‘;: 4;; ¢ Essentially, this is a brute-force approach with many
£ £ local decisions.
o 19 © 20
ide credit: Kristen Grauman B. Leibe ide credit: Kristen Grauman, B. Leibe
RWTH/ACHEN RWTH/ACHEN

What is a Sliding Window Approach? Recap: Non-Maximum Suppression

/_/

Clip detection score

¢ Search over space and scale

gﬁ.ﬂYBATS

o .Q \ m!nYBATs

JUDYBATS

Mg O

After multi-scale dense scan

Map each detection to 3D
[x,3,scale] space

< <
T T Goal R
o 3
£ £
7| ¢ Detection as subwindow classification problem 3 s
T:, ¢ “In the absence of a more intelligent strategy, any =g
z global image classification approach can be converted s
o into a localization approach by using a sliding-window T X
2 h.” 2 Apply robust mode detection,
5 searc 3 c
E- E- = e.g. mean shift
8 8 Fusion of multiple detections Non-maximum suppression
B. Leibe i B. Leibe Image source: Navneet Dalal PhD Tnzzi
RWTH ACHET RWTH ACHET

Recap: Sliding-Window Object Detection Object Detector Design

Fleshing out this
pipeline a bit more,

we need to:

1. Obtain training data
2. Define features

3. Define classifier

¢ In practice, the classifier often determines the design.
» Types of features
» Speedup strategies

¢ Today, we’ll look at 3 state-of-the-art detector designs
» Based on SVMs

3 3

§ 5 . Based on Boosting

= —| Car/non-car = B )

8 Classifier 5 i

] @ Y

5 5 » Based on Random Forests

5 Feature 5 H]

E_ extraction g L'/@\"J
8 . g ¢ ¢ o

ide credit: Kristen Grauman B. Leibe

B. Leibe




Topics of This Lecture

¢ SVM based Detectors
» Recap: HOG
» DPM

Computer Vision Il, Summer’14
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Recap: Support Vector Machine (SVM)

¢ Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying
R S
arg min — ||wi
gmin o w|
under the constraints
to(wlx, +b) >1 Vn

based on training data points x, and target values ¢,, € {—1,1}.
27
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RWTHAACHER
Pedestrian detection with HoGs & SVMs

* N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR’05
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Slide credit: Kristen Grauman B. Leibe
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Recap: Histograms of Oriented Gradients (HOG)

Object/Non-object
t
Linear SVM
f
Collect HOGs over
detectlon window

¢ Holistic object representation
» Localized gradient orientations

overlapping spatlal cells

Weighted vote in spatial &
onentat]on cells

Compute gradlents
T
Gamma compression
T
Image Window

\ |
‘ Contrast normallze over ‘
\ |
\ |

Slide adapted from Navneet Dalal

RWTH/ACHEN
Recap: Pedestrian Detection with HOG
¢ Train a pedestrian template using a linear SYM

* At test time, convolve feature map with template

y(x) =wrx +b

HOG feature map

Template

Detector response map

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

ide credit: Svetlana Lazebnik
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Extensions and Improvements(?)

Original HOG

missrate

——— Fubline (031)
——— Shapelet 050

MuliFr (015)
- LatEum (018

Hiksm (026)
Vi-Opency (063)
-~ Shapelet-orig (085)
s = o 0 .

0 0 o
Fake Positive Per-Window (FPPW)

false positives perimage

(a) INRIA per-window results. (b) INRIA per-image results.

¢ Choice of evaluation criterion is critical!
» Traditional evaluations on per-window classification.

» [Dollar et al,’09]: None of the methods proposed from 2004-
2009 brought an improvement for the actual detection task! 0

B. Leibe [Dollar et al., CVPR'09



http://lear.inrialpes.fr/pubs/2005/DT05
http://lear.inrialpes.fr/pubs/2005/DT05/

TWTH/ZCEN
Some Extensions that Did Survive...

e HOG + LBP [Ojala & Pietikdinen 1999, Wang et al. ‘09]
» Compute LBP histograms over cells, as
in HOG
= Features seem to be complementary
to some degree

¢ HOG + Depth + Flow  [Wojek et al. 2010, Gavrila 2012]
» For applications in intelligent vehicles where those are available
= Factor 40 reduction in false positives possible

HIK-SVM [Maji et al. 2008]

» Apply non-linear SVM kernels at reduced cost

¢ Explicit Feature Maps [Vedaldi & Zisserman 2010, ‘12]
~ Same as above, but on steroids

Computer Vision Il, Summer’14
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Real-Time Pedestrian Detection

¢ Efficient CUDA HOG implementation
(equivalent to original HOG code)

¢ Code made publicly available as
open source under GPL

¢ Run-time comparison:

= Detection at video frame rate possible even on laptops
with mobile GPUs!

s run-time 1280 x 960 640 x 480

E cuda [ ground [ cuda | ground
? Laptop GTX 285M || 1.6 fps 9.6fps | 7.2fps| 26 fps
s Desktop GTX 280 5.5fps | 17.2fps |22.7fps| 56 fps
e Desktop GTX 580 9.8fps | 27.8fps |41.6fps| 83 fps
E

=3

£

o

()

B. Leibe
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[P. Sudowe, B. Leibe, ICVS’11

Topics of This Lecture

¢ SVM based Detectors
> Recap: HOG
» DPM
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RWTH/CET
Incorporating Ground Plane Constraints

X G
¢ Efficient integration into detector design (groundHOG)
» Idea: only evaluate geometrically valid detection windows
» Derivation: Region of interest lies between two parabolas...
» ..that can in most cases be approximated by straight lines.
= Only touch pixels inside the ROI for all computations.
= Factor 2-4 speed improvement on top of all other optimizations

[P. Sudowe, B. Leibe, ICVS'11

Computer Vision Il, Summer’14

RWTH/JCHET]
You Can Try It At Home...

¢ groundHOG GPU detector code publicly available
» Highly optimized for speed
» Can be used with or without ground plane constraints
» Supports general ROl processing

Supports multi-class detection with feature sharing

» Published under GPL license (other licensing negotiable)

v

» http://www.vision.rwth-aachen.de/projects/groundhog

P. Sudowe, B. Leibe, Efficient Use of Geometric Constraints for Sliding Window
Object Detection in Video, ICVS 2011

Computer Vision Il, Summer’14
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Recap: Part-Based Models

¢ Pictorial Structures model
» [Fischler & Elschlager 1973]

¢ Model has two components
» Parts
(2D image fragments) EDGE
» Structure
(configuration of parts)

¢ Use in Deformable Part-based Model (DPM)
» Parts = 5-7 semantically meaningful parts
» Probabilistic model enabling efficient inference
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http://www.mmp.rwth-aachen.de/publications/pdf/sudowe-geometric-constraints-icvs11
http://www.mmp.rwth-aachen.de/publications/pdf/sudowe-geometric-constraints-icvs11
http://www.mmp.rwth-aachen.de/publications/pdf/sudowe-geometric-constraints-icvs11
http://www.mmp.rwth-aachen.de/publications/pdf/sudowe-geometric-constraints-icvs11

Starting Point: HOG Sliding-Window Detector
P

Filter F

Score of F'
- at position p is
F- ¢(p,H)

¢(p, H) = concatenation
of HOG features from
window specified by p.

HOG pyramid H

¢ Array of weights for features in window of HOG pyramid
e Score is dot product of filter and vector

B. Leibe

Computer Vision Il, Summer’14
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RWTHAACHE

2-Component Bicycle Model

; L
s
£
5 [
5
2
F -'e
S
]
s ]
g
3 Root filters Part filters Deformation
3 coarse resolution finer resolution models
o
39
ide credit: Pedro F¢ B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]
Score of a Hypothesis
“data term” “spatial prior”

score(pg, - - -, pn) = z":ﬂ - o(H, p:)| - X":a:,- - (d=?, dy?)

i=0 i=1 displacements

filters deformation parameters

score(z) = 3-V(H, z)

/N

concatenation filters and  concatenation of HOG
deformation parameters features and part

displacement features
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[Felzenszwalb, McAllister, Ramanan, CVPR’08]

ide credit: Pedrg B. Leibe
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Deformable Part-based Models

¢ Mixture of deformable part models (Pictorial Structures)
¢ Each component has global template + deformable parts
Fully trained from bounding boxes alone

38
[Felzenszwalb, McAllister, Ramanan, CVPR’08]

ide credit: Pedro B. Leibe

Object Hypothesis

EE

Score of filter:
dot product of filter
with HOG features

underneath it

Score of object
hypothesis is sum of
filter scores minus

= deformation costs
Image pyramid

HOG feature pyrar

¢ Multiscale model captures features at two resolutions

40
[Felzenszwalb, McAllister, Ramanan, CVPR’08]

ide credit: Pedro F B. Leibe
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Recognition Model

fula) = w-9(

¢ Difference to standard HOG model
» Hidden variable z: vector of part offsets
» ®(x,z) : vector of HOG features (from root filter &
appropriate part sub-windows) and part offsets
= Need to optimize over all possible part positions

42
McAllister Ramanan. CVPR'08]

ide adapted from Pedrg B. Leibe
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Results: Bicycles
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ide adapted from Trevor Darrell B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]

You Can Try It At Home... '
¢ Deformable part-based models have been very

successful at several recent evaluations.
= One of the state-of-the-art approaches in object detection

¢ Source code and models trained on PASCAL 2006, 2007,
and 2008 data are available here:

http://www.cs.uchicago.edu/~pff/latent
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Results: Persons

:

s

£

E

3

7]

H

g

= °* Results (after non-maximum suppression)

‘;: » ~1s to search all scales

£

o

o 44
ide credit: Pedro B. Leibe [Felzenszwalb, McAllister, Ramanan, CVPR’08]

Extensions and Detailed Improvements
¢ More efficient features
~ Very simplified version of HOG

¢ Latent part (re-)learning

» Perform several rounds of training,
adapting the annotation bboxes

8 ¢ Multi-aspect detection - - -

E » Mixture model of different aspects to . ..‘_b-

E capture different viewpoints of objects . .!.

= ¢ Bounding box prediction

;% » Infer final detection bounding box from

; detected part locations

‘g * Multi-resolution models

| * Cascaded evaluation ©
B. Leibe IF McAllister, Ramanan, PAMI"10]

Topics of This Lecture

¢ AdaBoost based Detectors
» Recap: Viola-Jones
» Integral Channel features
» VeryFast/Roerei
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http://www.cs.uchicago.edu/~pff/latent

Recap: Viola-Jones Face Detector

Train cascade of
classifiers with
AdaBoost

Selected features,
thresholds, and weights

Non-faces

¢ Train with 5K positives, 350M negatives
¢ Real-time detector using 38 layer cascade
* 6061 features in final layer

¢ [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]

Computer Vision Il, Summer’14
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Slide credit: Kristen Grauman B. Leibe

RWTHACHE
AdaBoost for Efficient Feature Selection

* Image features = weak classifiers
¢ For each round of boosting:
» Evaluate each rectangle filter on each example
Sort examples by filter values
Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
» Weight on this feature is a simple function of error rate
Reweight examples

v

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

Computer Vision I, Summer’14

Slide credit: Kristen Grauman B. Leibe

RWTHAACHER
Viola-Jones Face Detector: Results

JUDYBATS "
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Slide credit: Kristen Grauman LA

Recap: Haar Wavelets

“Rectangular” filters
ﬁ Feature output is difference
between adjacent regions

EE

Efficiently computable
with integral image: any
sum can be computed in
constant time

Value at (x,y) is
sum of pixels
above and to the
left of (x,y)

Avoid scaling images
= Scale features directly . ettt
Integral image D=l+d=@+3)
for same cost A+ BC+ DY -(A+C 4 4 B

Computer Vision Il, Summer’14
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[Viola & Jones, CVPR 2001]

de credit: Kristen Grauman B. Leibe

RWTH CHE
Recap: Cascading Classifiers for Detection

¢ Even if the filters are fast to compute, each new image
has a lot of possible windows to search...

Al Sub-windows

¢ Idea: Classifier cascade LIVt gl ISP
» Observation: most image F F lp lp
windows are negative and N M
look very different from the Reject Sub-window

searched object class.
Filter for promising regions with an initial inexpensive classifier

Build a chain of classifiers, choosing cheap ones with low false
negative rates early in the chain

v

v

[Fleuret & Geman, IJCV’01; Rowley et al., PAMI’98; Viola & Jones, CVPR’01]

Computer Vision Il, Summer’14

’ 52
ide adapted from Kristen Grauman B. Leibe Figure from Viola & Jones CVPR 2001

RWTH/ACHEN
You Can Try It At Home...

¢ The Viola & Jones detector was a huge success
» First real-time face detector available
» Many derivative works and improvements

¢ C++ implementation available in OpenCV [Lienhart, 2002]
» http://sourceforge.net/projects/opencvlibrary/
¢ Matlab wrappers for OpenCV code available, e.g. here
» http://www.mathworks.com/matlabcentral/fileexchange/19912
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P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004
54

ide credit: Kristen Grauman LA



http://sourceforge.net/projects/opencvlibrary/
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://sourceforge.net/projects/opencvlibrary/
http://www.mathworks.com/matlabcentral/fileexchange/19912
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

Topics of This Lecture

¢ AdaBoost based Detectors
> Recap: Viola-Jones
» Integral Channel features
» VeryFast/Roerei

Computer Vision Il, Summer’14
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RWTH/ACHEN
Integral Channel Features

* Generalize also block computation
» 1%t order features:
- Sum of pixels in rectangular region.

(@) histogram

» 2nd-order features:
- Haar-like difference of sum-over-blocks

» Generalized Haar:
- More complex combinations of weighted rectangles

» Histograms
- Computed by evaluating local sums on quantized images.

Computer Vision I, Summer’14

B. Leibe

Topics of This Lecture

¢ AdaBoost based Detectors
> Recap: Viola-Jones
~ Integral Channel features
» VeryFast/Roerei
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B. Leibe

Integral Channel Features

Gradient LUV color
magnitude channels

6 Orientation bins

¢ Generalization of Haar Wavelet idea from Viola-Jones

» Instead of only considering intensities, also take into account
other feature channels (gradient orientations, color, texture).

» Still efficiently represented as integral images.

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features,
BMVC’09.

Computer Vision Il, Summer’14
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RWTH CHE
Results: Integral Channel Features

& [Viola&Jones 2004]
0.7

0.5 fastHOG
~10 Hz on GPU
0.3 [Prisacariu 2009]

miss rate

3 DPM

\‘x [Felzenszwalb 2008]

ChnFtrs/FPDW
~5 Hz on CPU
[Dollar 2009+2010]

10°

10
false positives per image
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ide credit: Rodrigo. B. Leibe

INRIA dataset

0.2 Shapelet-orig (90.5%)
PoselnySvm (65.6%)

WJ-OpenCv (53.0%)

Poselny (51,4%)

Shapelat (50.4%)

W (47.5%)

0.1 FtrMine (34.0%)

= = = Pis (23.4%)

miss rate

LatSvm-V1 (17.5%)
MultiFtr (15.6%)

0.05 MultiFtr+CSS (10.95%)

LatSvm-V2 (9.3%)

s FPDW (8.3%)

= = =ChnFirs (8.7%

Jepeg

" I ;
107 107 10’ 10"

Her false positives per image

ide credit: Rodriso
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[Dollar et al. 2011]
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http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf

INRIA dataset

RSITY} UNIVERSITY]

Issues for Efficient Detection

¢ One template cannot detect at multiple scales...

Shapelet-orig (90.5%)

PoselnvSvm (65.6%)
VJ-OpenCv (53.0%)
Poselnv (51.4%)
Shapelet (50.4%)
—1)(47.5%)

Firbdine (34.0%)
== =Pis (23.4%)
= = =HOG (23.1%)
HikSvm (21.9%)

miss rate

= = = LatSwm-V1 (17.5%
= = = MUlFlr (15.6%)
MultiFtr+CSS. (10.9%)
LatSvm-V2 (9.3%)
— FPDW (9.3%) VeryFast 50 Hz

= = = ChnFirs (8.7%)
s Qi WeryFast (6.6%) \.

107 107 10° 10'
Better false positives per image
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A
/

ide credit: Rodrigo B ide credit: Rodrigo B B. Leibe &
RWTH/CHET RWTH/CHET]
.. . UNIVERSITY] L. . UNIVERSITY]
Issues for Efficient Detection Issues for Efficient Detection
¢ Typically, features are computed many times ¢ Typically, featuresare computed many time
& =
£ £
3 &
5 5
g g
38 38
ide credit: Rodrigo B B. Leibe ide credit: Rodrigo B. Leibe -
RWTH/ACHET
UNIVERSITY] A . . UNIVERSITY]
VeryFast Detector Practical Considerations
¢ |dea 1: Invert the relation ¢ Training and running 1 model/scale is too expensive
5 1 model, 50 models, §
= 50 image scales 1 image scale =
s s
%_ R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection g.‘_
E at 100 Frames per Second, CVPR’12. E
o o
ide credit: Rodriog B Lefbe * ide credit: Rodriog B. Leibe %



http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
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VeryFast Detector

¢ ldea 2: Reduce training time by feature interpolation

5 models,
1 image scale

50 models,
1 image scale

¢ Shown to be possible for Integral Channel features

» P. Dollar, S. Belongie, Perona. The Fastest Pedestrian Detector
in the West, BMVC 2010.

ide adapted from Rodrigo Benenson B. Leibe

RWTHACHEN
VeryFast: Classifier Construction
6 Orientation bins Gradient LUV color
magmude channels
N.«I 9

ﬁf

score = wi-hy +

* Ensemble of short trees, learned by AdaBoost

ide credit: Rodrigo B B. Leibe
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E
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RWTHACHEN

VeryFast: Classifier Construction

Gradient

LUV color
channels

-
\ar

6 Orientation bins .
magnitude

score = wy-hy+ wy - hy + +wy - hy

¢ Ensemble of short trees, learned by AdaBoost

ide credit: Rodrigo B LA
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VeryFast Detector

o Effect: Transfer test time computation to training time

1 model,
5 image scales

5 models,
1 image scale

= Result: 3x reduction in feature computation

ide adapted from Rodrigo Benenson B. Leibe

TWTHACHE
VeryFast: Classifier Construction
6 Orientation bins Gradient LUV color
magmude channels

M-

‘X
S\

\
score = wy - hy+ w - hy +

* Ensemble of short trees, learned by AdaBoost

ide credit: Rodrigo. B. Leibe
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Learned Models

Integral Channe
features

Models

08006G0RY UL
aeiuoa~f ]
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ide adapted from Rodriog Benenson LA
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http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf
http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf

UNIVERSITY] . . UNIVERSITY]
Results Multi-Scale Models > Single-Scale Mode
I'd
5 o
S ] 2
.; E ';
= E
3 £ w
> 3 o
g 2 :
° e maw) °
= ppticdrel =
5 o eyt ) g @
3 w0 107 1n° 10" 3 o
FEI- false posilives per image E- z
5 * Detection without resizing provides quality N 3 y
ide adapted from Rodrigo Benenson B. Leibe ide adapted from Rodrigo Benenson B. Leibe
RWTH/CHET RWTH/CHET]
. UNIVERSITY] . UNIVERSITY]
Comparison to State-of-the-Art Roerei Results
INRIA dataset ETH dataset
s 3
s s
E £
£ £
@ @
@ @ lobalk fion.
'%  Extension: Roerei detector { % " "mma‘
‘;-'_ » Detailed evaluation of design space ‘;; 2=
E » Non-regular pooling regions found to work best. E R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Seeking the
o 5 (3} Strongest Rigid Detector. CVPR’13. 7%
ide adapted from Rodrigo Benenson B. Leibe B. Leibe
RWTH/ACHET
. . . . . UNIVERSITY . A UNIVERSITY]
Applications: Mobile Robot Navigation Topics of This Lecture
${EUROPA
2 Home
Select tour
Moving robot
= Dialog view =
H Web view i
£ £
3 £
> 3
7] 7]
5 5
5 i %| * Random Forest based Detectors
E_ link to the video i E‘ > Recap: ISM
g )‘\ EUROPA” g » Hough Forests ”
B. Leibe B. Leibe



http://rodrigob.github.io/documents/2013_cvpr_roerei_with_supplementary_material.pdf
http://rodrigob.github.io/documents/2013_cvpr_roerei_with_supplementary_material.pdf
http://www.youtube.com/watch?v=d_S4CaxtQJU
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RWTH7TCTET
Recap: Implicit Shape Model (ISM) Idea

¢ Visual vocabulary is used to index votes for object
position [a visual word = “part”].

Visual codeword with
displacement vectors

Training image

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-3),
2008.

B. Leibe

RWTHACHEN

IEEFETEEEFESIAETE.
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galalabhfalabd]
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s [algalalelal o]

Training images a{an

(+reference segmentation) hqkikil

Appearance codebook
o Learn appearance codebook y 4 "

» Extract local features at interest points x_) ° i N
~ Feature clustering = codebook T }‘
S S,
s

4
¢ Learn spatial distributions v y

®
> Match codebook to training images ‘9 M B
» Record matching positions on object }
; 1Y
X
Spatial occurrence distributions

+ local figure-ground labels 81

s

B. Leibe
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Recap: ISM - Recognition

Interest Points  Matched Codebook Probabilistic
Entries Voting

d
AR, .
.Q. .'*‘
FORIERA {
3D Voting Space
(continuous)

é¢%

Backprojection
of Maxima

¢f

Backprojected
Hypotheses

83
[Leibe, Leonardis, Schiele, SLCV’04; 1JCV"08]

Recap: Implicit Shape Model (ISM) Idea

¢ Objects are detected as consistent configurations of the
observed parts (visual words).

m

Test image

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-3),
2008.
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Recap: ISM - Recognition

Interest Points  Matched Codebook Probabilistic
Entries Voting

! d
Y . ° °
g o
] '%. .;*c
F -0

. 3D Voting Spac(g
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Image Feature Interpretation Object
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C..0)

Probabilistic vote weighting
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82
[Leibe, Leonardis, Schiele, SLCV’04; 1JCV’08]
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Recap: ISM - Top-Down Segmentation

Interest Points  Matched Codebook Probabilistic
Entries Voting

V. .. 1
Pl

=

T 4

£ 3D Voting Space
§ (continuous)
7]

= §

] i

b

g

2 p(figure) Backprojected Backprojection

§ Probabilities Hypotheses of Maxima

84
B. Leibe JLeibe, Leonardis, Schiele, SLCV’04; 1JCV’08]
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http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf
http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf
http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf
http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf

RWTHACHE
Class-Specific Top-Down Segmentation

¢ During initial Hough Voting
> When we first observe a feature,
we do not know its context.
~ Different figure-ground labels may
be consistent with the appearance.

= Strategy: we cast votes for many
locations...

* After voting

» Voting groups features that are © G
consistent with the same object. 8 @

> We can now consider each feature ‘@
conditioned on the selected object
location hypothesis.

» This allows us to backproject a local

figure-ground label from selected votes.
B. Leibe
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Recap: ISM - Example Results

Computer Vision Il, Summer’14

87
B. Leibe [Leibe, Leonardis, Schiele, SLCV'04; IJCV'08]

RWTHACHEN

Hough Forest Object Detector  [Gall CVPR’09]

Combine idea of ISM-style Hough voting with dense
feature sampling and discriminative training.
» Randomized forest classifier densely processes image patches
» Leaf nodes correspond to visual words
» Cast votes for possible object hypotheses

¢ Good empirical performance, fast to evaluate

<
T
L
o
=
=
>
a
s
o
i
b
o
2
5
2
E
3
o

89
B. Leibe [Gall, Lempitsky, CVPR"09]
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RWTH//CHEN
Top-Down Segmentation
L]
i A
p(figure) \
Original image &! A Segmentation
'—“ p(figure)
p(ground)
p(ground)
¢ Interpretation of p(figure) map
» per-pixel confidence in object hypothesis
» Useful for hypothesis verification
B. Leibe [Leibe, Leonardis, Schiele, SLCV'04; ucv‘gg]
RWTH CHE

Topics of This Lecture

+ Random Forest based Detectors
» Recap: ISM
» Hough Forests

B. Leibe
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RWTH ACHET
Fast Dense Matching with Random Forests

¢ Ideas

» Solve feature extraction and codebook
matching at the same time

» Discriminative training of codebook features

¢ Extremely simple features

» 2-pixel comparisons in different
feature channels

~ Evaluation sub-linear in patch size

¢ Tree construction
» Each leaf node contains occurrence
distribution for Hough Voting
» Training goal: Minimize class entropy &
while keeping distributions compact

B. Leibe
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Top-Down Segmentation with Hough Forests

‘l“ 1\‘I.\

i a 4 has

p(figure)

Multi-View Extension

(a) Original image (b) Multi-view tree (€) Multi-view Hough (d) Multi-view detection
spaces

+ Random Forests are implicitly multi-class capable
» Create multi-class tree with per-class occurrence distributions
» Use one Hough space per class or viewpoint
» Necessary: multi-class non-maximum suppression

plground)

¢ Extend HFs with top-down segmentation mechanism
o Better results than for ISM due to dense sampling

Computer Vision Il, Summer’14
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91
[Razavi, Alvar, Gall, van Gool, CVPR’11; Rematas, Leibe, CORP’11

UNIVERSITY
HF-ISM: Qualitative Results

You Can Try All of This At Home...
¢ Detector code is publicly available

» HOG: - Dalal’s original implementation:
http://www.navneetdalal.com/software/
- Our CUDA-optimized groundHOG code (>80 fps on GTX 580
http://www.mmp.rwth-aachen.de/projects/groundhog

» DPM: - Felzenswalb’s original implementation:
http://www.cs.uchicago.edu/~pff/latent

> ISM: - My original implementation:

(no ground plane constraints used) http://www.vision.rwth-aachen.de/software/ism

¢ Observations

» Improved detection performance compared to original HF
(competitive with HOG + HIKSVM on pedestrians).

» Better segmentations than original ISM due to dense sampling.

» HF: - Gall’s original implementation:
http://www.vision.ee.ethz.ch/~gallju/index.html#software|

» VeryFast: - Benenson’s original implementation:
https://bitbucket.org/rodrigob/doppia/
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http://www.mmp.rwth-aachen.de/projects/groundhog
http://www.navneetdalal.com/software/
http://www.mmp.rwth-aachen.de/projects/groundhog
http://www.mmp.rwth-aachen.de/projects/groundhog
http://www.mmp.rwth-aachen.de/projects/groundhog
http://www.cs.uchicago.edu/~pff/latent
http://www.vision.rwth-aachen.de/software/ism
http://www.vision.rwth-aachen.de/software/ism
http://www.vision.rwth-aachen.de/software/ism
http://www.vision.rwth-aachen.de/software/ism
http://www.vision.ee.ethz.ch/~gallju/index.html
http://www.cs.berkeley.edu/~lbourdev/poselets/

