

Computer Vision II - Lecture 4

Color based Tracking

29.04.2014

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Color based tracking
 - Contour based tracking
 - > Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Articulated Tracking

Recap: Estimating Optical Flow

Optical Flow

Solution Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them.

Key assumptions

- Brightness constancy: projection of the same point looks the same in every frame.
- Small motion: points do not move very far.
- Spatial coherence: points move like their neighbors.

Recap: Lucas-Kanade Optical Flow

- Use all pixels in a $K \times K$ window to get more equations.
- Least squares problem:

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix} A \quad d = b$$
25x2 2x1 25x1

Minimum least squares solution given by solution of

$$(A^T A) d = A^T b$$

$$2 \times 2 \times 1 \qquad 2 \times 1$$

Recall the Harris detector!

$$\begin{bmatrix} \sum_{x} I_{x} I_{x} & \sum_{x} I_{x} I_{y} \\ \sum_{x} I_{x} I_{y} & \sum_{x} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x} I_{x} I_{t} \\ \sum_{x} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

4

Recap: Iterative Refinement

- Estimate velocity at each pixel using one iteration of LK estimation.
- Warp one image toward the other using the estimated flow field.
- Refine estimate by repeating the process.
- Iterative procedure
 - Results in subpixel accurate localization.
 - Converges for small displacements.

RWTHAACHEN UNIVERSITY

Recap: Coarse-to-fine Optical Flow Estimation

RWTHAACHEN UNIVERSITY

Recap: Coarse-to-fine Optical Flow Estimation

7

B. Leibe

Recap: Shi-Tomasi Feature Tracker (→KLT)

Idea

- > Find good features using eigenvalues of second-moment matrix
 - Key idea: "good" features to track are the ones that can be tracked reliably.

Frame-to-frame tracking

- Track with LK and a pure translation motion model.
- More robust for small displacements, can be estimated from smaller neighborhoods (e.g., 5×5 pixels).

25

Checking consistency of tracks

- Affine registration to the first observed feature instance.
- Affine model is more accurate for larger displacements.
- Comparing to the first frame helps to minimize drift.

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.

Recap: General LK Image Registration

Goal

Find the warping parameters ${\bf p}$ that minimize the sum-of-squares intensity difference between the template image $T({\bf x})$ and the warped input image $I({\bf W}({\bf x};{\bf p}))$.

LK formulation

Formulate this as an optimization problem

$$\arg\min_{\mathbf{p}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^{2}$$

We assume that an initial estimate of p is known and iteratively solve for increments to the parameters Δp :

$$\arg\min_{\Delta\mathbf{p}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta\mathbf{p})) - T(\mathbf{x}) \right]^2$$

Recap: Step-by-Step Derivation

- Key to the derivation
 - ightarrow Taylor expansion around $\Delta {f p}$

$$I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) \approx I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} + \mathcal{O}(\Delta \mathbf{p}^2)$$

= $I(\mathbf{W}([x, y]; p_1, \dots, p_n))$

$$+ \begin{bmatrix} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \dots & \frac{\partial W_x}{\partial p_n} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \dots & \frac{\partial W_y}{\partial p_n} \end{bmatrix} \begin{bmatrix} \Delta p_1 \\ \Delta p_2 \\ \vdots \\ \Delta p_n \end{bmatrix}$$

Gradient

Jacobian

Increment parameters to solve for

abla I

 $\frac{\partial \mathbf{v}}{\partial \mathbf{p}}$

 $\Delta \mathbf{p}$

Slide credit: Robert Collins

B. Leibe

Recap: LK Algorithm

Iterate

- ightharpoonup Warp I to obtain $I(\mathbf{W}([x,\,y];\,\mathbf{p}))$
- ▶ Compute the error image $T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p}))$
- ullet Warp the gradient abla I with $\mathbf{W}([x,\,y];\,\mathbf{p})$
- Figure $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $([x, y]; \mathbf{p})$ (Jacobian)
- lacksquare Compute steepest descent images $abla I rac{\partial \mathbf{W}}{\partial \mathbf{p}}$
- ullet Compute Hessian matrix $\mathbf{H} = \sum_{\mathbf{x}} \left[
 abla I rac{\partial \mathbf{W}}{\partial \mathbf{p}}
 ight]^T \left[
 abla I rac{\partial \mathbf{W}}{\partial \mathbf{p}}
 ight]$
- Compute

$$\sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{T} \left[T([x,y]) - I(\mathbf{W}([x,y];\mathbf{p})) \right]$$

- > Compute $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \! \left[T([x,y]) I(\mathbf{W}([x,y];\mathbf{p})) \right]$
- > Update the parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$
- Until $\Delta \mathbf{p}$ magnitude is negligible

Recap: LK Algorithm Visualization

Example of a More Complex Warping Function

Encode geometric constraints into region tracking

Constrained homography transformation model

- Translation parallel to the ground plane
- Rotation around the ground plane normal
- $\mathbf{W}(\mathbf{x}) = \mathbf{W}_{obj} \mathbf{P} \mathbf{W}_t \mathbf{W}_{\alpha} \mathbf{Q} \mathbf{x}$
- ⇒ Input for high-level tracker with car steering model.

Today: Color based Tracking

Topics of This Lecture

- Mean-Shift
 - Mean-shift mode estimation
 - Using mean-shift on color images
- Mean-Shift with Explicit Weight Images
 - Histogram backprojection
 - CAMshift approach
- Mean-Shift with Implicit Weight Images
 - Comaniciu's approach
 - Bhattacharyya distance
 - Gradient ascent
- Comparison
 - Qualitative intuition

Mean-Shift

Mean-Shift Tracking

- Efficient approach to tracking objects whose appearance is defined by color.
- Actually, the approach is not limited to color. Can also use texture, motion, etc.

Popular use for object tracking

- Very simple to implement
- Non-parametric method, does not make strong assumptions about the shape of the distribution
- Suitable for non-static distributions (as typical in tracking)
- Can be combined with dynamic models (Kalman filters, etc.)
- Good performance in practice

vector

Using Mean-Shift on Color Models

Two main approaches

1. Explicit weight images

- Create a color likelihood image, with pixels weighted by the similarity to the desired color (best for unicolored objects).
- Use mean-shift to find spatial modes of the likelihood.

2. Implicit weight images

- Represent color distribution by a histogram.
- Use mean-shift to find the region that has the most similar color distribution.

Topics of This Lecture

- Mean-Shift
 - Mean-shift mode estimation
 - Using mean-shift on color images
- Mean-Shift with Explicit Weight Images
 - Histogram backprojection
 - CAMshift approach
- Mean-Shift with Implicit Weight Images
 - Comaniciu's approach
 - Bhattacharyya distance
 - Gradient ascent
- Comparison
 - Qualitative intuition

Mean-Shift on Weight Images

Ideal case

Want an indicator function that returns 1 for pixels on the tracked object and 0 for all other pixels.

Instead

- Compute likelihood maps
- Value at a pixel is proportional to the likelihood that the pixel comes from the tracked object.

- Color
- Texture
- Shape (boundary)
- Predicted location

Mean-Shift Tracking

Idea

- Let pixels form a uniform grid of data points.
- Each pixel has a weight proportional to the likelihood that the pixel is on the object we want to track.
- Perform standard mean-shift using the weighted set of points.

$$\Delta \mathbf{x} = \frac{\sum_{\mathbf{a}} K(\mathbf{a} - \mathbf{x}) w(\mathbf{a})(\mathbf{a} - \mathbf{x})}{\sum_{\mathbf{a}} K(\mathbf{a} - \mathbf{x}) w(\mathbf{a})}$$

Mean-Shift Tracking

A closer look at the procedure...

⇒ Mean-shift computes the weighted mean of all shifts (offsets), weighted by the likelihood under the kernel function.

term

Duality Property

Duality

- Running mean-shift with kernel K on weight image w is equivalent to performing gradient ascent in a (virtual) image formed by convolving w by some shadow kernel H.
- Note: mode we are looking for is mode of location (x,y) likelihood, NOT mode of color distribution.

Example: Face Tracking using Mean-Shift

Figure 7: Orientation of the flesh probability distribution marked on the source video image

Figure 8: First four head tracked degrees of freedom: X, Y, Z location, and head roll

G. Bradski, <u>Computer Vision Face Tracking for use in a</u>

<u>Perceptual User Interface</u>, *IEEE Workshop On Applications of*<u>Computer Vision</u>, Princeton, NJ, 1998, pp.214-219.

30

Explicit Weight Images

- Histogram backprojection
 - ightarrow Histogram is an empirical estimate of $p(color \mid object) = p(c \mid o)$

> Bayes' rule says:
$$p(o|c) = \frac{p(c|o)p(o)}{p(c)}$$

- > Simplistic approximation: assume p(o)/p(c) is constant.
- \Rightarrow Use histogram h as a lookup table to set pixel values in the weight image.
- ightharpoonup If pixel maps to histogram bucket i, set weight for pixel to h(i).

Side Note: Color Histograms for Recognition

- Using color histograms for recognition
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

Localization by Histogram Backprojection

- "Where in the image are the colors we're looking for?"
 - Query: object with histogram M
 - Given: image with histogram I
- Compute the "ratio histogram": $R_i = \min \left(\frac{M_i}{I_i}, 1 \right)$
 - R reveals how important an object color is, relative to the current image.
 - Color is frequent on the object \Rightarrow large M_i
 - Color is frequent in the image \implies large I_i
 - > This value is projected back into the image (i.e. the image values are replaced by the values of R that they index).
 - The result image is convolved with a circular mask the size of the target object.
 - Peaks in the convolved image indicate detected objects.

Object Localization Results

- Example result after backprojection
 - Looking for blue pullover...

Bradski's CAMshift

Idea

- Find x,y location of mode by mean-shift.
- > Determine z, roll angle θ by fitting an ellipse to the mode found using mean-shift.

RWTHAACHEN UNIVERSITY

Visualization: Bradski's CAMshift in Action

Problem: Scale Changes

- Window always has the same size
 - > When the object size changes, does not fit anymore
 - ⇒ Tracking soon diverges...

RWTHAACHEN UNIVERSITY

Visualization: Scale Adaptation in CAMshift

Mean shift window initialization

CAMShift Results

- Face tracking
 - Using a skin color model in HSV color space

RWTHAACHEN UNIVERSITY

Applications: Perceptual User Interfaces

- Head tracking as input modality
 - Controlling a flight simulator by head gestures

Topics of This Lecture

- Mean-Shift
 - Mean-shift mode estimation
 - Using mean-shift on color images
- Mean-Shift with Explicit Weight Images
 - Histogram backprojection
 - CAMshift approach
- Mean-Shift with Implicit Weight Images
 - Comaniciu's approach
 - Bhattacharyya distance
 - Gradient ascent
- Comparison
 - > Qualitative intuition

Using Mean-Shift on Color Models

Two main approaches

1. Explicit weight images

- Create a color likelihood image, with pixels weighted by the similarity to the desired color (best for unicolored objects).
- Use mean-shift to find spatial modes of the likelihood.

2. Implicit weight images

- Represent color distribution by a histogram.
- Use mean-shift to find the region that has the most similar color distribution.

Implicit Weight Images

- Sometimes the weight is not explicitly created
 - > Example: Mean-shift Tracking by Comaniciu et al.
 - Weight is embedded into the matching procedure
 - Comes out as a side effect of matching two pdfs.

Interesting consequence

- Implicit weight image changes between iterations of mean-shift, as compared to iterating to convergence on an explicit weight image!
- \Rightarrow We'll take a look at their approach and see how this works.
 - D. Comaniciu, V. Ramesh, P. Meer. <u>Kernel-Based Object Tracking</u>, PAMI, Vol. 25(5), pp. 564-575, 2003.

Mean-Shift Object Tracking

Main idea: Match the pdf of the target object

Mean-Shift Object Tracking

Approach

Color histogram representation

target model:

$$\hat{\mathbf{q}} = \{\hat{q}_u\}_{u=1\dots m}$$

$$\sum_{u=1}^{m} \hat{q}_u = 1$$

target candidate:

$$\hat{\mathbf{p}}(\mathbf{y}) = \{\hat{p}_u(\mathbf{y})\}_{u=1...m}$$

$$\sum_{u=1}^{m} \hat{p}_u = 1 .$$

- Measuring distances between histograms
 - Distance as a function of window location y

$$d(\mathbf{y}) = \sqrt{1 - \rho \left[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}\right]}$$

ightarrow where $\hat{
ho}(\mathbf{y})$ is the Bhattacharyya coefficient

$$\hat{\rho}(\mathbf{y}) \equiv \rho \left[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}\right] = \sum_{u=1}^{m} \sqrt{\hat{p}_u(\mathbf{y})\hat{q}_u},$$

Approach

Compute histograms via Parzen estimation

$$\hat{q}_u = C \sum_{i=1}^n k(\|\mathbf{x}_i^{\star}\|^2) \delta \left[b(\mathbf{x}_i^{\star}) - u \right] ,$$

$$\hat{p}_u(\mathbf{y}) = C_h \sum_{i=1}^{n_h} k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_i}{h} \right\|^2 \right) \delta \left[b(\mathbf{x}_i) - u \right] ,$$

- where $k(\cdot)$ is some radially symmetric smoothing kernel profile, \mathbf{x}_i is the pixel at location i, and $b(\mathbf{x}_i)$ is the index of its bin in the quantized feature space.
- Consequence of this formulation
 - Gathers a histogram over a neighborhood
 - Also allows interpolation of histograms centered around an off-lattice location.

Goal:

- Find the location y that maximizes the Bhattacharyya coefficient
- $oldsymbol{ iny}$ Taylor expansion around current values $p_u(\mathbf{y}_0)$

$$\rho\left[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}\right] \approx \frac{1}{2} \sum_{u=1}^{m} \sqrt{\hat{p}_u(\hat{\mathbf{y}}_0)\hat{q}_u} + \frac{C_h}{2} \sum_{i=1}^{n_h} w_i k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_i}{h} \right\|^2 \right)$$

This does not depend on y

⇒ Just need to maximize this.

Note: It's a KDE!!!

where
$$w_i = \sum_{u=1}^m \sqrt{\frac{\hat{q}_u}{\hat{p}_u(\hat{\mathbf{y}}_0)}} \delta\left[b(\mathbf{x}_i) - u\right]$$
.

> Taylor expansion around current values $p_u(\mathbf{y}_0)$

$$\rho\left[\hat{\mathbf{p}}(\mathbf{y}), \hat{\mathbf{q}}\right] \approx \frac{1}{2} \sum_{u=1}^{m} \sqrt{\hat{p}_u(\hat{\mathbf{y}}_0)\hat{q}_u} + \frac{C_h}{2} \sum_{i=1}^{n_h} w_i k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_i}{h} \right\|^2 \right)$$

This does not depend on y

⇒ Just need to maximize this. Note: It's a KDE!!!

Find the mode of the second term by mean-shift iterations

$$\hat{\mathbf{y}}_{1} = \frac{\sum_{i=1}^{n_{h}} \mathbf{x}_{i} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n_{h}} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} \quad \text{where } g(x) = -k'(x).$$

At each iteration, perform

$$\hat{\mathbf{y}}_{1} = \frac{\sum_{i=1}^{n_{h}} \mathbf{x}_{i} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n_{h}} w_{i} g\left(\left\|\frac{\hat{\mathbf{y}}_{0} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} \quad \text{where } g(x) = -k'(x).$$

- ightharpoonup which is just standard mean-shift on (implicit) weight image w_i .
- ightharpoonup Let's look at the weight image more closely. For each pixel \mathbf{x}_i

$$w_i = \sum_{u=1}^m \sqrt{\frac{\hat{q}_u}{\hat{p}_u(\hat{\mathbf{y}}_0)}} \delta\left[b(\mathbf{x}_i) - u\right].$$
 This is only 1 once in the summation

 \Rightarrow If pixel \mathbf{x}_i 's value maps to histogram bucket B, then

$$w_i = \sqrt{(q_B, p_B(\mathbf{y}_0))}$$

Summary

- > If model histogram is $q_1,\ q_2,\ ...,\ q_m$ and current data histogram is $p_1,\ p_2,\ ...,\ p_m$
- > Form weights $q_1/p_1,\ q_2/p_2,\ ...,\ q_m/p_m$
- > Do "histogram backprojection" of these values into the image to get the weight image w_i . (Note: this is done implicitly)

Note

- In each iteration, $p_1,\ p_2,\ ...,\ p_m$ change, and therefore so does the weight image w_i .
- ⇒ Different from applying mean-shift to fixed likelihood image!

Results: Mean-Shift Tracking

Configuration

- > Feature space: $16 \times 16 \times 16$ quantized RGB
- Target manually selected in 1st frame
- Average mean-shift iterations per frame: 4

D. Comaniciu, V. Ramesh, P. Meer. <u>Kernel-Based Object Tracking</u>, PAMI, Vol. 25(5), pp. 564-575, 2003.

Results: Mean-Shift Tracking

Difficulties

Partial occlusion

Distraction

Motion blur

⇒ Mean-shift still performs robustly despite those.

Topics of This Lecture

- Mean-Shift
 - Mean-shift mode estimation
 - Using mean-shift on color images
- Mean-Shift with Explicit Weight Images
 - Histogram backprojection
 - CAMshift approach
- Mean-Shift with Implicit Weight Images
 - Comaniciu's approach
 - Bhattacharyya distance
 - Gradient ascent
- Comparison
 - Qualitative intuition

RWTHAACHEN UNIVERSITY

Qualitative Intuition

- Bradski's Mean-Shift procedure
 - Assume that an object is 60% red and 40% green.
 - I.e., $q_1=0.6$, $q_2=0.4$, $q_i=0$ for all other i.

- If we just did histogram backprojection of these likelihood values (a la Bradski), we would get this weight image:
- Mean-shift does a weighted center-of-mass computation at each iteration.
- ⇒ Window will be biased towards the region of red pixels, since they have higher weight!

Qualitative Intuition

Comaniciu's approach

Let's assume the data histogram is perfectly located

$$\Rightarrow q_1=0.6$$
, $q_2=0.4$, $q_i=0$ for all other i . $p_1=0.6$, $p_2=0.4$, $p_i=0$ for all other i .

$$\Rightarrow w_1 = \operatorname{sqrt}(0.6/0.6)$$
, $w_2 = \operatorname{sqrt}(0.4/0.4)$, $w_i = 0$ for all other i .

⇒ Resulting weight image:

- ⇒ Much better!
- ⇒ Perfect object indicator function.

References and Further Reading

- The original CAMshift paper
 - G. Bradski, <u>Computer Vision Face Tracking for use in a Perceptual User Interface</u>, IEEE Workshop On Applications of Computer Vision, Princeton, NJ, 1998, pp.214-219.
- The Mean-Shift Tracking paper by Comaniciu
 - D. Comaniciu, V. Ramesh, P. Meer. <u>Kernel-Based Object Tracking</u>, PAMI, Vol. 25(5), pp. 564-575, 2003.