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Announcements 

• Course webpage 

 http://www.vision.rwth-aachen.de/teaching/ 

 Slides will be made available on the webpage 

 

• L2P electronic repository 

 Exercises and supplementary materials will be posted on the L2P 

 

 

• Please subscribe to the lecture on the Campus system! 

 Important to get email announcements and L2P access! 

 Bachelor students please also subscribe 

2 
B. Leibe 

http://www.vision.rwth-aachen.de/teaching/
http://www.vision.rwth-aachen.de/teaching/
http://www.vision.rwth-aachen.de/teaching/
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 
 

• Multi-Object Tracking 
 

• Articulated Tracking 

3 
Image source: Tobias Jaeggli 
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Topics of This Lecture 

• Motivation: Background Modeling 
 

• Simple Background Models 

 Background Subtraction 

 Frame Differencing 
 

• Statistical Background Models 

 Single Gaussian 

 Mixture of Gaussians 

 Kernel Density Estimation 
 

• Practical Issues and Extensions 

 Background model update 

 False detection suppression 

 Shadow suppression 

 Applications 
 B. Leibe 

4 
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Motivation: Tracking from Static Cameras 

5 
B. Leibe Video source: Wolfgang Mehner 
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Motivation 

• Goals 

 Want to detect and track all kinds of objects in a wide variety  

of surveillance scenarios. 

 Need a general algorithm that works for many scenarios. 
 

 Video frames come in at 30Hz. There is not much time to 

process each image. 

 Real-time algorithms need to be very simple. 
 

• Assumptions 

 The camera is static. 

 Objects that move are important (people, vehicles, etc.). 
 

• Basic Approach 

 Maintain a model of the static background. 

 Compare the current frame to this model to detect objects. 
6 

B. Leibe Slide adapted from Robert Collins 
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Background Modelling Results 

7 
B. Leibe Video source: Wolfgang Mehner 
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Topics of This Lecture 

• Motivation: Background Modeling 
 

• Simple Background Models 

 Background Subtraction 

 Frame Differencing 
 

• Statistical Background Models 

 Single Gaussian 

 Mixture of Gaussians 

 Kernel Density Estimation 
 

• Practical Issues and Extensions 

 Background model update 

 False detection suppression 

 Shadow suppression 
 

B. Leibe 
8 
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Simple Background Subtraction 

 

 

 

 

 

 

 

 

• Procedure 

 Background model is a static image (without any objects). 

 Pixels are labeled based on thresholding the absolute intensity 

difference between current frame and background. 

10 
B. Leibe Slide credit: Robert Collins 
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Background Subtraction Results 

 

 

 

 

 

 

 

• Observation 

 Background subtraction does a reasonable job of extracting the 

object shape if the object intensity/color is sufficiently different 

from the background. 
 

• What are the limitations of this simple procedure? 

 11 
B. Leibe Slide credit: Robert Collins 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I

I,
 S

u
m

m
e
r’

1
4

 

Background Subtraction: Limitations 

• Outdated reference frame 

 Objects that enter the scene and  

stop continue to be detected... 

    ...making it difficult to detect new  

objects that pass in front of them. 

 

 
 

 If part of the assumed static back- 

ground starts moving... 

    ...both the object and its negative  

ghost (the revealed background) are  

detected. 

 

12 
B. Leibe Slide credit: Robert Collins 
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Background Subtraction: Limitations 

• Illumination changes 

 Background subtraction is sensitive 

to illumination changes and unim- 

portant scene motion (e.g., tree 

branches swaying in the wind). 

 

 
 

• Global threshold 

 A single, global threshold for the 

entire scene is often suboptimal. 

 
 

 Need adaptive model with  

local decisions 

13 
B. Leibe Slide credit: Robert Collins 
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• Other idea 

 Background model is replaced with the previous image. 

Simple Frame Differencing 

14 
B. Leibe Slide credit: Robert Collins 
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Frame Differencing Observations 

• Advantages 

 Frame differencing is very quick to adapt  

to changes in lighting or camera motion. 

 Objects that stop are no longer detected. 

 Objects that start up no longer leave behind 

ghosts. 

 

• Limitations 

 Frame differencing only detects the leading 

and trailing edge of a uniformly colored  

object. 

 Very few pixels on the object are labeled. 

 Very hard to detect an object moving  

towards or away from the camera. 

15 
B. Leibe Slide credit: Robert Collins 
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Differencing and Temporal Scale 

 

 

 

 
 

• More general formulation 
 

 Define 

 

• Effect of increasing the temporal scale 

 More complete object silhouette, but two copies of the object 

(one where it used to be, one where it is now). 

 

16 
B. Leibe Slide credit: Robert Collins 
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Three-Frame Differencing 

• Improved approach to handle this problem 

17 
B. Leibe Slide credit: Robert Collins 

where the object was 

and where it is now 

where the object is now 

and where it will be 

where the object is now! 
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Three-Frame Differencing 

 

 

 

 

 

 

 

 

 
 

• Problem 

 Choice of good frame-rate for three-frame differencing 

depends on size and speed of object. 

18 
B. Leibe 

This worked well 

for the person 

Slide credit: Robert Collins 
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 Current image is “blended” into the background model with ®. 

Adaptive Background Subtraction 

19 
B. Leibe Slide credit: Robert Collins 
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Adaptive Background Subtraction 

• Properties 

 More responsive to changes in illumination 

and camera motion. 

 Small, fast-moving objects are well-segmented, 

but they leave behind short “trails” of pixels. 
 

 Objects that stop and ghosts left behind by 

objects that start both gradually fade into the 

background. 

 
 

 The centers of large, slow-moving objects 

start to fade into the background, too! 

 This can be fixed by decreasing the blend 

parameter ®, but then it takes longer for  

ghost objects to disappear... 
20 

B. Leibe Slide credit: Robert Collins 
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Comparisons 

 

21 
B. Leibe 

BG Subtraction Frame Differencing Adaptive BG Subtract. 

Slide adapted from Robert Collins 
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Discussion 

• Background subtraction / Frame differencing 

 Very simple techniques, historically among the first. 

 Straight-forward to implement, fast to test out. 

 We’ve seen some fixes for the most pressing problems.  
 

• Remaining limitations 

 Rather heuristic approach. 

 Leads to relatively poor foreground/background decisions. 

 Optimal temporal scale still depends on object size and speed. 

 Global threshold is often suboptimal for parts of the image. 

 Very fiddly in practice, requires extensive parameter tuning. 
 

• Let’s try to come up with a better founded approach 

 Using a statistical model of background probability... 

22 
B. Leibe 
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Topics of This Lecture 

• Motivation: Background Modeling 
 

• Simple Background Models 

 Background Subtraction 

 Frame Differencing 
 

• Statistical Background Models 

 Single Gaussian 

 Mixture of Gaussians 

 Kernel Density Estimation 
 

• Practical Issues and Extensions 

 Background model update 

 False detection suppression 

 Shadow suppression 
 

B. Leibe 
23 
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Gaussian Background Model 

• Statistical model 

 Value of a pixel represents a measure- 

ment of the radiance of the first object  

intersected by the pixel’s optical ray. 

 With a static background and static  

lighting, this value will be a constant  

affected by i.i.d. Gaussian noise.  
 

• Idea 

 Model the background distribution of each pixel by a single 

Gaussian centered at the mean pixel value: 

 

 

 Test if a newly observed pixel value has a high likelihood  

under this Gaussian model. 

 Automatic estimation of a sensitivity threshold for each pixel. 
24 

B. Leibe 

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾
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• Computation of the likelihood 

 Single data point: 
 

 Assumption: all data points                            are independent 

 

 
 

 Log-likelihood 

 
 
 

• Estimation of the parameters µ (Learning) 

 Maximize the likelihood (=minimize the negative log-likelihood) 

 Take the derivative and set it to zero. 

 

Recap: Maximum Likelihood Approach 

25 
B. Leibe 

L(µ) = p(Xjµ) =

NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele 

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Recap: Maximum Likelihood Approach 

• For a 1D Gaussian, we thus obtain 

 

 
 

• In a similar fashion, we get 

 

 
 

•                 is the Maximum Likelihood estimate for the 

parameters of a Gaussian distribution. 

• Note: the estimate of the sample variance is biased. 

Better use 

26 
B. Leibe 

¹̂ =
1

N

NX

n=1

xn

¾̂2 =
1

N

NX

n=1

(xn ¡ ¹̂)2

“sample mean” 

“sample variance” 

µ̂ = (¹̂; ¾̂)
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Online Adaptation (1D Case) 

• Once estimated, adapt the Gaussians over time 

 We can compute a running estimate over a time window  

 

 

 

 

 

 

 However, distribution is non-stationary (and newer values are 

more important)  better use Exponential Moving Average filter 

 

 

 

    with a fixed learning rate ®. 

 27 
B. Leibe 
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 A single Gaussian is clearly insufficient here... 

Problem: Complex Distributions 

28 
B. Leibe Image source: Chris Stauffer 

RG scatter plots of the same pixel taken 2 min apart 

Bi-modal distribution caused by specularities on the water surface 
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Problem: Adaptation Speed, Sensitivity 

• If the background model adapts too slowly... 

 Will construct a very wide and inaccurate model with low 

detection sensitivity 
 

• If the model adapts too quickly... 

 Leads to inaccurate estimation of the model parameters 

 The model may adapt to the targets themselves (especially  

slow-moving ones) 

 

• Design trade-off 

 Model should adapt quickly to changes in the background 

process and detect objects with high sensitivity. 

 How can we achieve that? 

29 
B. Leibe 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I

I,
 S

u
m

m
e
r’

1
4

 

MoG Background Model 

• Improved statistical model 

 Large jumps between different pixel values 

because different objects are projected onto 

the same pixel at different times. 

 While the same object is projected onto the 

pixel, small local intensity variations due to  

Gaussian noise.  
 

• Idea 

 Model the color distribution of each pixel by a mixture of K 

Gaussians 

 
 

 Evaluate likelihoods of observed pixel values under this model. 

 Or let entire Gaussian components adapt to foreground objects 

and classify components as belonging to object or background. 
30 

B. Leibe Image source: Chris Bischop 
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Recap: Mixture of Gaussians 

• “Generative model” 

31 
B. Leibe 

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1 
2 

3 

p(xjµ1)
p(xjµ2)

p(xjµ3)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Recap: EM Algorithm 

• Expectation-Maximization (EM) Algorithm 

 E-Step: softly assign samples to mixture components 
 

 

 

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments 

32 
B. Leibe 

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft number of samples labeled j 

°j(xn) Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele 
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Stauffer-Grimson Background Model 

 

 

 

 

 

 

 

 

• Very popular model 

 Used in many tracking approaches 

 Suitable for long-term observations (finding patterns of activity) 

 

33 
B. Leibe 

C. Stauffer, W.E.L. Grimson, Adaptive Background Mixture Models for 

Real-Time Tracking, CVPR 1998. 

Image source: C. Stauffer 

http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf‎
http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf‎
http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf‎
http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf‎
http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf‎
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Stauffer-Grimson Background Model 

• Idea 

 Model the distribution of each pixel by a mixture of K Gaussians 

 

 
 

 Check every new pixel value against the existing K components 

until a match is found (pixel value within 2.5 ¾k of ¹k). 

 If a match is found, adapt the corresponding component. 

 Else, replace the least probable component by a distribution 

with the new value as its mean and an initially high variance and 

low prior weight. 

 Order the components by the value of wk/¾k and select the best 

B components as the background model, where 
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where 
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Stauffer-Grimson Background Model 

• Online adaptation 

 Instead of estimating the MoG using EM, use a simpler online 

adaptation, assigning each new value only to the matching 

component. 

 Let Mk,t = 1 iff component k is the model that matched, else 0. 

 
 

 Adapt only the parameters for the matching component 

 

 

 

    where 

 

    (i.e., the update is weighted by the component likelihood) 
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Discussion: Stauffer-Grimson Model 

• Properties 

 Static foreground objects can be integrated into the mixture 

– Advantage: This doesn’t destroy the existing background model. 

– If an object is stationary for some time and then moves again, the 

distribution for the background still exists 

 Quick recovery from such situations. 
 

 Ordering of components by wk/¾k  

– Favors components that have more evidence (higher wk)  

and a smaller variance (lower ¾k). 

 Those are typically the best candidates for background. 
 

 Model can adapt to the complexity of the observed distribution. 

– If the distribution is unimodal, only a single component will be 

selected for the background. 

 This can be used to save memory and computation. 
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Problem: Outdoor Scenes 

 

 

 

 

 

 

• Dynamic areas 

 Waving trees, rippling water, ... 

 Fast variations 

 

 More flexible representation 

needed here. 

 
37 

B. Leibe Image & Video source: A. Elgammal 
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Recap: Kernel Density Estimation 

• Estimating the probability density from discrete samples 
 

 Approximation: 

 

 

 

 

 

• Kernel methods 

 Example: Determine  
the number K of data  

points inside a fixed  

hypercube… 

38 
B. Leibe 

p(x) ¼ K

NV

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

Slide credit: Bernt Schiele 
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Recap: Kernel Density Estimation 

• Parzen Window 

 Hypercube of dimension D with edge length h: 

 

 

 

 

 

 

 

 

 Probability density estimate: 

39 
B. Leibe 

k(u) =

½
1; jui · 1

2
; i = 1; : : : ; D

0; else

K =

NX

n=1

k(
x¡ xn

h
) V =

Z
k(u)du = hd

p(x) ¼ K

NV
=

1

NhD

NX

n=1

k(
x¡ xn

h
)

“Kernel function” 

Slide credit: Bernt Schiele 
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Recap: Parzen Window 

• Interpretations 

1. We place a kernel window k at 

location x and count how many  

data points fall inside it. 

 

2. We place a kernel window k around 

each data point xn and sum up 

their influences at location x. 

   Direct visualization of the density. 

 

• Still, we have artificial discontinuities at the cube 

boundaries… 

 We can obtain a smoother density model if we choose a 

smoother kernel function, e.g. a Gaussian 

40 
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Kernel Background Modeling 

 

 

 

 

 

 

 

• Nonparametric model of background appearance 

 Very flexible approach, can deal with large amounts of 

background motion and scene clutter 
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A. Elgammal, D. Harwood, L.S. Davis, Non-parametric Model for  

Background Subtraction, ECCV 2000. 

Video source: Ahmed Elgammal 

http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
http://www.cs.umd.edu/users/elgammal/docs/bgmodel_ECCV00_postfinal.pdf
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Kernel Background Modeling 

42 
B. Leibe 

• Nonparametric density estimation 

 Estimate a pixel’s background distribution using the kernel 

density estimator K(¢) as 

 

 

 

 Choose K to be a Gaussian N(0, §) with § = diag{¾j}. Then 

 

 

 
 

 A pixel is considered foreground if p(x(t)) < µ for a threshold µ. 

– This can be computed very fast using lookup tables for the kernel 

function values, since all inputs are discrete values. 

– Additional speedup: partial evaluation of the sum usually sufficient 
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• Performance in heavy rain 

Results Kernel Background Modeling 

44 
B. Leibe Video source: Ahmed Elgammal 
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• Results for color images 

 

 

 

 

 

 

 

 

• Practical issues with color images 

 Which color space to use? 

Results Kernel Background Modeling 

45 
B. Leibe Video source: Ahmed Elgammal 
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Topics of This Lecture 

• Motivation: Background Modeling 
 

• Simple Background Models 

 Background Subtraction 

 Frame Differencing 
 

• Statistical Background Models 

 Single Gaussian 

 Mixture of Gaussians 

 Kernel Density Estimation 
 

• Practical Issues and Extensions 

 Background model update 

 False detection suppression 

 Shadow suppression 

 Applications 
 B. Leibe 
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Practical Issues: Background Model Update 

• Kernel background model 

 Sample N intensity values taken over a window of W frames.  
 

• FIFO update mechanism 

 Discard oldest sample. 

 Choose new sample randomly from each interval of length  

W/N frames. 
 

• When should we update the distribution? 

 Selective update: add new sample only if it is classified as a 

background sample 

 Blind update: always add the new sample to the model. 
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Updating Strategies 

• Selective update 

 Add new sample only if it is classified as a background sample. 

 Enhances detection of new objects, since the background model 

remains uncontaminated. 

 But: Any incorrect detection decision will result in persistent 

incorrect detections later. 

 Deadlock situation. 
 

• Blind update 

 Always add the new sample to the model. 

 Does not suffer from deadlock situations, since it does not 

involve any update decisions. 

 But: Allows intensity values that do not belong to the 

background to be added to the model. 

 Leads to bad detection of the targets (more false negatives). 
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Solution: Combining the Two Models 

• Short-term model 

 Recent model, adapts to changes quickly to allow very sensitive 

detection 

 Consists of the most recent N background sample values. 

 Updated using a selective update mechanism based on the 

detection mask from the final combination result. 
 

• Long-term model 

 Captures a more stable representation of the scene background 

and adapts to changes slowly. 

 Consists of N samples taken from a much larger time window. 

 Updated using a blind update mechanism. 
 

• Combination 

 Intersection of the two model outputs. 
49 

B. Leibe [A. Elgammal, D. Harwood, L. Davis, ECCV’00] 
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Extension: False Detection Suppression 

• Problem 

 Small camera motion (e.g., due to wind swaying) may still result 

in false detections.  
 

• Workaround 

 Consider a small circular neighborhood (e.g., 5£5) Ne(x) and 

evaluate the pixel under each neighbor’s background model By: 

 

 

 Threshold pNe to determine the foreground pixels. 

 Eliminates many false detections, but also some true ones.  
 

 To avoid losing true detections, add the constraint that an entire 

connected component must have moved from a nearby location, 

not only some of its pixels.  
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B. Leibe [A. Elgammal, D. Harwood, L. Davis, ECCV’00] 
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• Results 

 Effects of camera wind shaking are almost entirely suppressed 

Effect of False Detection Suppression 

51 
B. Leibe Video source: Ahmed Elgammal 

Original video Without false 

detection suppr. 

With false 

detection suppr. 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I

I,
 S

u
m

m
e
r’

1
4

 

Extension: Shadow Suppression 

 

 

 

 

 

 

• Shadows are often detected together with the objects 

 Leads to poor localization, should be avoided. 

 Idea: Shadowed regions should have the same color as the 

neighboring background, only the intensity is lower.  

 Use chromaticity coordinates to remove shadows. 
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Color Normalization 

• One component of the 3D color space is intensity 

 If a color vector is multiplied by a scalar, the intensity changes, 

but not the color itself.  

 This means colors can be normalized by the intensity. 

– Intensity is given by  I = R + G + B: 

 „Chromatic representation“ 
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Chromaticity Coordinates 

• Observation: 

 Since R + G + B = 1, only 2 parameters are necessary 

 E.g., one can use R and G and obtains B = 1 – R – G 

 

 

 

 

 

 

 

 
 

 Caveat: cannot distinguish between white and gray anymore! 

 Use the normalized (r,g) coordinates, but keep the lightness  

s = R + B + G as third coordinate  (r,g,s) 
54 
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Shadow Removal Procedure 

• Idea 

 Let <r, g, s> be the expected background pixel color  

and <rt, gt, st> be the observed one.  

 Shadows or highlights affect the expected pixel lightness within 

certain bounds ® · st/s · ¯. 
 

• Procedure 

 Select the subset B of relevant sample points for each pixel 

from the stored set A, i.e. those samples that could produce the 

observed lightness if affected by shadows: 

 

 
 

 Apply the regular kernel background model based on this subset 

B using only the (r,g) color components. 

55 
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Effect of Shadow Suppression 

56 
B. Leibe Video source: Ahmed Elgammal 

Original video Without shadow suppr. With shadow suppr. 
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Topics of This Lecture 

• Motivation: Background Modeling 
 

• Simple Background Models 

 Background Subtraction 

 Frame Differencing 
 

• Statistical Background Models 

 Single Gaussian 

 Mixture of Gaussians 

 Kernel Density Estimation 
 

• Practical Issues and Extensions 

 Background model update 

 False detection suppression 

 Shadow suppression 

 Applications 
 B. Leibe 
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Applications: Visual Surveillance 

 

 

 

 

 

 

 

 

 

 

• Background modeling to detect objects for tracking 

 Extension: Learning a foreground model for each object. 
58 

B. Leibe Video source: Ian Reid, Univ. of Oxford 
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Applications: Articulated Tracking 

59 
B. Leibe 

 

 

 

 

 

 

 
 

• Background modeling as preprocessing step 

 Track a person’s location through the scene 

 Extract silhouette information from the foreground mask. 

 Perform body pose estimation based on this mask. 

 

Video source: Hedvik Kjellstroem, Tobias Jaeggli 
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Summary 

• Background Modeling 

 Fast and simple procedure to detect moving object in static 

camera footage. 

 Makes subsequent tracking much easier! 

 If applicable, always make use of this information source! 
 

• We’ve looked at two models in detail 

 Adaptive MoG model (Stauffer-Grimson model) 

 Kernel background model (Elgammal et al.) 

 Both perform well in practice, have been used extensively. 
 

• Many extensions available 

 Learning object-specific foreground color models 

 Background modeling for moving cameras 

 ... 
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References and Further Reading 

• More information on density estimation in Bishop’s book 

 Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4. 

 Mixture of Gaussians:   Ch. 2.3.9 and 9 

 Nonparametric methods:  Ch. 2.5. 

• More information on background modeling: 

 Visual Analysis of Humans: Ch. 3 

 C. Stauffer et al., Adaptive Background Models for Real-Time Tracking, CVPR’98 

 A. Elgammal et al., Non-parametric Model for Background Subtraction, ECCV’00 
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