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Abstract. This paper presents an integrated framework for mobile street-level
tracking of multiple persons. In contrast to classic tracking-by-detection approa-
ches, our framework employs an efficient level-set tracker in order to follow indi-
vidual pedestrians over time. This low-level tracker is initialized and periodically
updated by a pedestrian detector and is kept robust through a series of consis-
tency checks. In order to cope with drift and to bridge occlusions, the resulting
tracklet outputs are fed to a high-level multi-hypothesis tracker, which performs
longer-term data association. This design has the advantage of simplifying short-
term data association, resulting in higher-quality tracks that can be maintained
even in situations where the pedestrian detector does no longer yield good de-
tections. In addition, it requires the pedestrian detector to be active only part of
the time, resulting in computational savings. We quantitatively evaluate our ap-
proach on several challenging sequences and show that it achieves state-of-the-art
performance.

1 Introduction

In this paper, we address the problem of multi-person tracking with a camera mounted
on top of a moving vehicle, e.g. a mobile robot. This task is very challenging, since mul-
tiple persons may appear or emerge from occlusions at every frame and need to be de-
tected. Since background modeling [1] is no longer applicable in a mobile scenario, this
is typically done using visual object detectors [2]. Consequently, tracking-by-detection
has become the dominant paradigm for such applications [3–8]. In this framework, a
generic person detector is applied to every frame of the input video sequence, and the
resulting detections are associated to tracks. This leads to challenging data association
problems, since the detections may themselves be noisy, containing false positives and
misaligned detection bounding boxes [2]. Several approaches have been proposed to
address this issue by optimizing over a larger temporal window using model selection
[5], network flow optimization [9], or hierarchical [8] or MCMC data association [10].

Intuitively, this complex data association seems to be at least to some degree an
overkill. Once we have detected a person in one frame, we know its appearance and
should be able to use this information in order to disambiguate future data associa-
tions. This has been attempted by using person-specific color descriptors (e.g. [4–6]) or
online-trained classifiers [11]. The difficulty here is however that no precise segmen-
tation is given – the detector bounding boxes contain many background pixels and the
persons’ limbs may undergo considerable articulations, causing the classifiers to drift.
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Another problem of tracking systems that only rely on detector input is that they will
not work in situations where the detectors themselves fail, e.g. when a person gets too
close to the camera and is partially occluded by the image borders. [6] explicitly point
out those situations as failure cases of their approach.

In this paper, we propose to address those problems by complementing the detection-
based tracking framework with a robust image-level tracker based on level-set (LS) seg-
mentation. In this integration, a high-level tracker only initializes new tracklets from ob-
ject detections, while the frame-to-frame target following and data association is taken
over by the image-based tracker. The resulting tracked target locations are then trans-
mitted back to the high-level tracker, where they are integrated into 3D trajectories using
physically plausible motion models.

This combination is made possible by the great progress LS segmentation and track-
ing approaches have made in recent years [12]. Approaches are now available that can
obtain robust tracking performance over long and challenging sequences [13]. In addi-
tion, LS trackers can be efficiently implemented using narrow-band techniques, since
they need to process only a small part of the image around the tracked contour. How-
ever, the targeted integration is far from trivial. The LS tracking framework has orig-
inally been developed for following individual targets over time and has mostly been
evaluated for tasks where a manual initialization is given [12, 13]. Here, we need to au-
tomatically initialize a large number of tracklets from potentially inaccurate detections.
In addition, we need to deal with overlaps and partial occlusions between multiple fol-
lowed persons, as well as with tracker drift from changing lighting conditions and poor
image contrast. Finally, we need to account for cases where a person gets fully occluded
for a certain time and comes into view again a few frames later. In this paper, we show
how those challenges can be addressed by a careful interplay of the system components.

Our paper makes the following contributions: (1) We demonstrate how LS trackers
can be integrated into a tracking-by-detection framework for robust multi-person track-
ing. (2) Our approach is based on the idea to track each individual pedestrian by an auto-
matically initialized level-set. We develop robust methods for performing this initializa-
tion from object detections and show how additional geometric constraints and consis-
tency checks can be integrated into the image-based LS tracker. (3) The tracked person
contours in each video frame are automatically converted to 3D world coordinates and
are transmitted to the high-level tracker, which integrates the position evidence into a
robust multi-hypothesis trajectory estimation approach making use of physical motion
models. This high-level tracker is responsible for initializing new tracks, correcting the
low-level tracker’s predictions when drift occurs, and tracking person identities through
occlusions. (4) We experimentally demonstrate that this proposed integration achieves
robust multi-person tracking performance in challenging mobile scenarios. In partic-
ular, as our approach does not depend on continuous pedestrian detection, it can also
continue tracking persons that are only partially visible. (5) An interesting property of
our integration is that it does not require the object detector to be executed for every
video frame. This is especially relevant for the deployment on mobile platforms, where
real-time performance is crucial and computational resources are notoriously limited.
We experimentally investigate at what intervals object detections are still required for
robust system-level performance.
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Fig. 1. System-level view of our proposed end-to-end tracking framework.

The following section discusses related work. After that, Sec. 2 presents our pro-
posed end-to-end tracking framework. Sec. 3 introduces the basic algorithmic compo-
nents for LS tracking and trajectory estimation. Sec. 4 then describes the details of the
integration, and Sec. 5 presents experimental results.

Related Work. Multi-object tracking from a mobile platform is a core capability for
many applications in mobile robotics and autonomous vehicles [14]. While early ap-
proaches have been developed for aerial scenarios [15, 16], an application on ground-
level poses significant additional difficulties. Robust multi-person tracking in such chal-
lenging situations has only recently become feasible by the development of powerful
tracking-by-detection approaches [4, 7, 14, 5, 6]. Various strategies have been developed
for solving the challenging data association problems encountered here. However, most
of them regard only a single-layer tracker [11, 3, 5–7], which sometimes makes the
problem unnecessarily hard. Most directly related to our approach are the multi-layer
models of [16, 15], which also initialize a number of low-level trackers to follow in-
dividual objects and later integrate their results in a high-level tracker. However, their
frameworks are based on aerial scenarios, where adaptive background modeling is still
feasible. [8] also propose a hierarchical data association framework that links detection
responses to form tracklets at an image level, before fusing the tracklets and integrat-
ing scene constraints at higher levels. Their approach is however targeted at a surveil-
lance application with a static camera. [17] integrates multiple short and low-confidence
tracklet hypotheses into consistent tracks using MCMC. In contrast, our approach cre-
ates long and highly confident tracklets for individual persons under specific conditions
of an LS tracker and integrates them into an EKF-based multiple-hypothesis tracker. To
our knowledge, ours is the first approach that integrates segmentation-based LS-trackers
[13, 12] with a tracking-by-detection framework for street-level mobile tracking.

2 Integrated Tracking Framework

Fig. 1 shows a system-level overview of our proposed integrated tracking framework.
The system is initialized by detections from a pedestrian detector. For each detected
person, an independent LS tracker (a tracklet) is initialized, which follows this person’s
motion in the image space. The LS tracker is kept robust through a series of consistency
checks and transmits the tracked person’s bounding box to the high-level tracker after
every frame. The high-level tracker in turn converts the bounding boxes to ground plane
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Φ(x)

Fig. 2. Level-set segmentation. The contour separates object Ωf from background Ωb in a ref-
erence frame given by the warp W (x, p), which is related to the person’s bounding box by the
displacement V (x, p′). This contour is the zero level-set of the embedding function Φ.

coordinates and integrates them into physically plausible trajectories using the model
selection framework described in Sec. 3.2. During regular operation, the object detector
only needs to be activated in regular intervals in order to prevent existing tracklets
from degenerating and to start new ones for newly appearing pedestrians. In addition,
tracklets can request new detections when they become uncertain. Overall, this results
in considerable computational savings, as we will show in Sec. 5.

Setup. Similar to previous work on mobile pedestrian tracking [14, 5, 6], we assume
a setup of a stereo camera rig mounted on a mobile platform. From this setup, we
obtain structure-from-motion (SfM), stereo depth, and a ground plane estimate for every
frame. All subsequent processing is then performed only on the left camera stream.

3 Algorithmic Components

3.1 Level-Set Tracking

Like [13], we use a probabilistic level-set framework, which first performs a segmenta-
tion and in the next frames a rigid registration and shape adaptation. The object shape
is defined by the zero level-set of an embedding function Φ(x) (Fig. 2) acting on pixel
locations x with appearance y. This level-set is evolved in order to maximize the accor-
dance with learned foreground and background appearance models Mf and Mb, while
fulfilling certain constraints on the shape of the embedding function and of the contour.

Segmentation. The variational level-set formulation for the segmentation consists of
three terms which penalize the deviation from the foreground and background model,
the deviation of the embedding function from a signed distance function [18], and the
length of the contour. A segmentation is achieved by optimizing this energy functional
with the following gradient flow [13]:

∂P (Φ,p|Ω)
∂Φ

=
δε(Φ)(Pf − Pb)
P (x|Φ,p,y)︸ ︷︷ ︸

deviation from fg/bg model

− 1
σ2

[
∇2Φ− div( ∇Φ

|∇Φ|
)
]

︸ ︷︷ ︸
deviation from signed dist. fct.

+λδε(Φ)div(
∇Φ
|∇Φ|

)︸ ︷︷ ︸
length of contour

(1)
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where P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1 − Hε(Φ(xi)))Pb, ∇2 is the Laplacian,
Hε is a smoothed Heaviside step function and δε its derivative, a smoothed Dirac delta
function. Ω = {Ωf ,Ωb} denotes the foreground/background pixels in the object frame.

Pf and Pb are the pixel-wise posteriors of the foreground and background models
given the pixel appearance. Those models are obtained from the pixels inside and out-
side the contour during the first segmentation. The segmentation is performed in several
iterations and the models are rebuilt in every iteration. In the subsequent tracking steps,
the model parameters Mf and Mb are only slightly adapted to the current image in
order to achieve higher robustness.

Tracking. Similar to image alignment, the tracking part aims at warping the next frame
such that its content best fits the current level-set. This way, the location of the tracked
object is obtained. The warp W (x,p) is a transformation of the reference frame with
parameters p. Any transformation forming a group can be used here, e.g. affine trans-
formations. In our application for pedestrian tracking, we currently use only transla-
tion+scale. For optimizing the location, the next image is incrementally warped with
∆p until convergence [13]:

∆p=

[
N∑
i=1

1
2P (xi|Φ,p,yi)

[
Pf

Hε(Φ(xi))
− Pb

(1−Hε(Φ(xi)))

]
JTJ

]−1

×
N∑
i=1

(Pf−Pb)JT

P (xi|Φ,p,yi)
(2)

with J = δε(Φ(xi))∇Φ(xi) ∂W∂∆p , where ∂W
∂∆p is the Jacobian of the warp.

Appearance Models. [13] only uses color for the foreground and background model.
We found that in our application, this yields rather unreliable segmentations for pedes-
trians, since other people or background structures often contain similar colors. We
therefore extend the approach by also including stereo depth information.

For segmentation, we use the median depth of the foreground area. Unlike the color
distribution, the median depth will not stay the same during the following frames. For
tracking, we therefore use a simple motion model which computes an expected distance
range for each pedestrian according to the last median depth and a maximum velocity.
Each depth value in the image is then assigned a probability according to a Gaussian
distribution around the median depth or the expected depth, respectively. The color
models are represented as L*a*b histograms with 323 bins. The two probabilities for
color and depth are individually normalized as in [13] and then merged with a weighting
factor α (set to 0.1 in all of our experiments).

Pi = (1− α)Pi,color + αPi,depth, i ∈ {f, b} , (3)

3.2 Tracking-by-Detection

For the high-level tracker, we use a simplified version of the robust multi-hypothesis
tracking framework by [5]. We first describe the basic approach, as it would be ap-
plied for pure tracking-by-detection. Section 4 then details how this approach is adapted
through the integration with the level-set tracker.

In brief, the approach works as follows. Detected pedestrian locations are converted
to 3D world coordinates using the current camera position from SfM together with an
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(a) (b) (c) (d) (e) (f)

Fig. 3. Initialization of the LS tracker: (a) detection box (green), initial object frame (yellow),
and initialization of the level-set (magenta); (b,c) evolved level-set after 40 and 150 iterations; (d)
level-set transferred to next frame; (e) after warping; (f) after shape adaptation (5 iterations).

estimate of the scene’s ground plane. These measurements are collected in a spacetime
volume, where they are integrated into multiple competing trajectory hypotheses. The
final hypothesis set is then obtained by applying model selection in every frame.

Trajectory Estimation. We model pedestrian trajectories by Kalman filters with a
constant-velocity motion model on the ground plane, similar to [6]. When new obser-
vations become available in each frame, we first try to extend existing trajectory hypo-
theses by the new evidence. In addition, we start a new trajectory hypothesis from each
new detection and try to grow it by applying a Kalman filter backwards in time through
the spacetime volume of past observations. This step allows us to recover lost tracks
and bridge occlusions. As a consequence of this procedure, each detection may end up
in several competing trajectory hypotheses.

Model Selection. For each frame, we try to find the subset of trajectory hypotheses that
provides the best explanation for the collected observations. This is done by performing
model selection in a Minimum Description Length framework, as in [5]. A trajectory’s
score takes into account the likelihood of the assigned detections under its motion and
appearance model (represented as a color histogram). Trajectory hypotheses interact
through penalties if they compete for the same detections or if their spacetime footprints
overlap. For details of the mathematical formulation we refer to [5].

Assigning Person Identities. As the model selection procedure may choose a different
hypothesis set in each frame, a final step is required in order to assign consistent person
IDs to the selected trajectories. This is done by maintaining a list of active tracks and
assigning trajectories to them based on the overlap of their supporting observations.

4 Combined Tracker

We now present the stages of our combined tracking framework. The difficulty of the
street-level mobile tracking task brings with it a number of non-trivial challenges, which
we address by consistency checks and carefully modeled interactions between the com-
ponents of the tracking framework.

Object Detection. For pedestrian detection, we apply the widely used HOG detector
[19] in the efficient fastHOG GPU implementation by [20]. Detections inconsistent with
the scene geometry are filtered out by enforcing a ground plane corridor.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Adaptation to lighting changes: (a-c) tracked shape becomes too small due to lighting
changes; (d,e) level-set re-initialization is triggered; (f) tracking can continue.

Level-Set Initialization. Upon initialization, the LS tracker tries to segment the torso
of the person inside a detection box. To this end, a new level-set embedding function
is initialized with a rectangular box (see Fig. 3), and the level-set segmentation is iter-
ated for 150 steps. In the next frame, the contour is tracked and the resulting warp is
applied to the object frame and the associated detection box in order to obtain the new
object position. Afterwards, the level-set shape is adapted for 5 iterations. We track
only the person’s torso, since this body part deforms only very little, requiring fewer
shape adaptation iterations than tracking the full body. This speeds up level-set tracking
and increases the robustness, since it limits the amount of “bleeding” that can occur
to similar-colored background pixels. To infer the person’s full extent, we maintain the
transformation V (x,p′) from the warped reference frame to the original bounding box.

Multi-Region Handling and Overlap Detection. When tracking several persons, each
of the tracked contours is represented by its own level-set. Even if there are overlaps, the
level-sets will not interact directly (as, e.g., in [21]). Instead, we use the stereo depth in
order to resolve overlaps. All tracked persons are sorted according to their distance from
the camera and the closest person is updated first. All pixels belonging to the resulting
segmentation are masked out, such that they cannot be used by the remaining persons.

This leaves us with some persons that are only partially visible, which is in fact the
same case as a person leaving the image frame. We developed a method for dealing
with partial visibility without losing shape information. As can be seen in eq. (2), only
a narrow band of pixels around the contour, which is determined by δε(Φ), is taken into
account for tracking. If pixels are masked out or are outside the image frame, we set δε
to zero for those pixels, which will result in tracking only the visible part of the contour.
Thus, if an object becomes completely visible again, the shape will still fit. Objects are
discarded if only a small part of the area inside the contour (50% for person-person
occlusions, 20% for occlusions by image borders) remains visible.

Level-Set Re-initialization. Lighting changes or similar colors near the object can
cause the contour to shrink during tracking (see Fig. 4) or to bleed out during shape
adaptation. By periodically updating a tracklet bounding box with new detector bound-
ing boxes, it is possible to identify degenerating shapes based on their size in relation
to the bounding box. This is done by first performing the level-set tracking step for
adapting the contour to the new image and then matching the tracked location to new
detector boxes. If the box overlap (measured by intersection-over-union) is above 0.5,
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Fig. 5. Depth-based bounding box correction: (a) original bounding box; (b) depth map; (c) cor-
rection procedure; (d) corrected bounding box (see text for details).

the detection box is used to update the relationship V (x,p′) between box and warp.
The level-set contour itself is only updated if its area gets too small or too large with
respect to the updated box, or if 20% of its content lie outside the box. Thus, the tracklet
integrity is maintained and an ID change is avoided (c.f . Fig. 4).

Consistency Checks. For robust operation, it is necessary to check the consistency of
the tracking results. An object could be occluded, leave the image frame or be lost for
other reasons. This may not even have any effect on the convergence of the LS tracker,
which might get stuck on some local image structure, resulting in a wrong track. We
therefore perform the following checks in order to identify corrupted tracklets. (1) If the
object is occluded and only background colors remain, the shape will typically shrink
massively within a few frames. If such a case is detected, the tracklet is terminated. (2)
We keep track of the median depth inside the tracked contour and react if this value
changes too fast. We distinguish two cases here: If the median depth decreases too fast,
this indicates an occlusion by another object; if the depth increases too fast, the object
was probably lost. We terminate the tracklets in both cases. (3) Finally, objects whose
median depth does not fit their ground-plane distance are also discarded. Typically, a
failed consistency check indicates a tracking failure and will result in a request for the
detector to be activated in the next frame. An exception are cases where an occlusion
is “explained” by the high-level tracker (see below), or when the object is close to the
image boundary and is about to leave the image.

Depth-based Bounding Box Correction. Level-set (re-)initialization and high-level
3D trajectory integration require accurately aligned bounding boxes. In general, the
HOG detector however yields detections with a certain border area. Similarly, the boxes
provided by the LS tracker may drift due to articulations and shape changes of the
level-set contour and need to be corrected. We therefore apply the following correction
procedure both to new detections and after each level-set tracking step. Starting from
the original bounding box (Fig. 5(a)), we first compute the median depth around the
bounding box center (Fig. 5(b)). We then determine the corresponding 3D point us-
ing the camera calibration from SfM and project it onto the ground plane (Fig. 5(c),
steps(1)+(2)). We add a fixed offset in the viewing direction in order to determine the
person’s central foot point, and finally project the resulting 3D point back to the image
(Fig. 5(c), steps (3)+(4)). This determines the bottom line of the corrected bounding
box. The top line is found by searching for the highest point inside the bounding box
that is within 0.5m of the median depth (Fig. 5(d)). As a final step, we verify that the re-
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sulting bounding box aspect ratio is in the range [ 13 ,
2
3 ]. Bounding boxes falling outside

this range are rejected as likely false positives.

Requesting New Detections. New detections are requested in the following cases: (1)
if a tracklet has not received an updated detection in the last k frames; (2) if a tracking
failure cannot be explained by an occlusion or by the tracked person leaving the image;
(3) if no request has been issued for k frames (e.g., since no object is currently tracked).
A tracklet will not request new detections if it is close to the image boundary, as the
chance for finding a detection there would be small. If a tracklet receives no updated
detection despite its request, it will repeat the request, but will continue to be tracked as
long as it passes the consistency and depth correction checks.

Integration with High-Level Tracker. The high-level tracker’s task is to integrate the
tracklet bounding boxes into physically plausible 3D trajectories. This is done by first
creating an observation at each tracked person’s 3D foot point and then associating this
observation to trajectory hypotheses. The overall procedure is similar to the general
tracking-by-detection framework described in Sec. 3. However, we make the following
changes in order to account for the additional information provided by the LS tracker.

Since we already know the tracklet identity of each observation from the LS tracker,
we can use this information in order to simplify data association. Thus, we first try to
extend each existing trajectory hypothesis by searching for an observation matching
the trajectory’s currently followed tracklet ID in a gating area around the Kalman filter
prediction. If such an observation can be found, it will directly be associated with the
trajectory. Note that in this case, only the motion model is considered; the appearance
is assumed to be correct due to the association performed by the LS tracker. In case no
observation with the correct tracklet ID can be found, we try to find the best-matching
observation under the trajectory’s motion and appearance model (again within a gating
area determined by the Kalman filter uncertainty). If such a new observation can be
found, the trajectory takes on the new tracklet ID, thus connecting the two tracklets.
This latter case can occur if the LS tracker diverges and fails the consistency checks (in
which case the tracklet will be terminated), if the tracked bounding box is rejected by
the depth correction (in which case the tracklet may persist for up to k frames and can
be recovered), or if the tracked object is occluded or leaves the image.

In addition to the above, each observation is used to start a new trajectory hypothe-
sis, which searches backwards in time in order to find a potentially better explanation
for the observed data. This makes it possible to automatically create tracks for newly
appearing persons and to correct earlier tracking errors. The final set of accepted tracks
is then obtained by performing model selection, as described in Section 3.2.

Tracking through Occlusions. As motivated above, a main advantage of the image-
based low-level tracker, compared to a pure tracking-by-detection approach, is that it
simplifies data association, thus making it easier to integrate observed pedestrian loca-
tions into valid tracks. The image-based tracklet generation will however fail when the
tracked person gets occluded, which often occurs in practice. This is a limitation of any
image-based tracking approach. While strategies can be devised to cope with short-term
occlusions at the image-level, they would make this component unnecessarily complex.
In our approach, we instead address this issue by explicit occlusion handling on the
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Fig. 6. Example for the occlusion handling process: (top row) contours tracked by the LS tracker;
(bottom row) output of the high-level tracker. When the distant person is temporarily occluded, its
LS tracklet is terminated. As soon as the occlusion is over, a new tracklet is started. The high-level
tracker connects both tracklets through the occlusion and maintains the person’s identity.

high-level tracker’s side. In order to bridge short-time occlusions, we keep potentially
occluded trajectories alive for up to 15 frames and extrapolate their position on the
ground plane using the Kalman filter. Since the latter’s positional uncertainty grows
with the absence of observations, the corresponding person can likely be associated to
the predicted trajectory again when reappearing from the occlusion.

In addition, the high-level tracker can predict person-person occlusions and reinitial-
ize the image-based tracker when those are over. For this, we backproject the predicted
3D bounding box of each tracked person into the image and compute the bounding box
overlap using the intersection-over-union criterion. If the overlap is larger than 0.5, then
an occlusion is likely to occur. This information is stored together with the occluded
trajectory and is transmitted to the corresponding LS tracklet, which will typically be
terminated 1-2 frames later when the consistency check fails. When the corresponding
object is predicted to become visible again a few frames later, the object detector is fired
in order to recover the person with as little delay as possible. This “safe termination”
and subsequent new tracklet generation strategy proved to be robust in our experiments.
It is similar in spirit to the track-suspend-fail strategy proposed in [15], but our approach
extends the idea through the integration of the robust multi-hypothesis tracking frame-
work.

Fig. 6 shows an example where this occlusion handling process is used in prac-
tice. Cued by the occlusion prediction and the failed depth consistency check, the LS
tracklet is terminated in order to avoid degeneracies (which would be likely in this case
due to the similar color distributions). On the high-level tracker’s side, the trajectory is
however extrapolated through the occlusion. As soon as the occluded person becomes
visible again, the object detector is fired again in order to initialize a new LS tracklet,
which is correctly associated to the trajectory, maintaining the person’s identity.
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Fig. 7. Examples demonstrating our approach’s capability to continue tracking persons close to
the camera and/or the image borders, where object detection is no longer applicable.

5 Experimental Results

Datasets. We evaluated our approach on two challenging sequences from the Zurich
Mobile Pedestrian corpus generously provided by the authors of [6]. We used the se-
quences BAHNHOF (in the following: “Seq. A”) and SUNNY DAY (“Seq. B”). Both
sequences were captured with a stereo rig (13-14fps, 640x480). Seq. A (999 frames,
with 5193 annotated pedestrians of ≥ 60 pixels height) was taken on a crowded side-
walk on a clouded day. Seq. B (999 frames, 354 of which are annotated with 1867
annotations) was captured on a sunny day and contains strong illumination changes.
Both sequences come with stereo depth maps, structure-from-motion localization, and
ground plane estimates. Similar to [6], we upscale all images to twice their original
resolution in order to detect also pedestrians at larger distances. Using the upscaled im-
ages, fastHOG performed at 2-3fps (10fps for original images). In contrast to [6, 5], we
however only use the left camera stream for detection and tracking, thus reducing the
necessary processing effort. All system parameters were kept the same throughout both
sequences.

Tracking Performance. Figure 7 shows qualitative results of our approach, demon-
strating its capability to continue tracking persons that appear close to the camera or
that are partially occluded by the image boundaries. This is a fundamental advantage
our tracking framework can offer over pure tracking-by-detection approaches.

In order to assess our approach’s performance quantitatively, we adopt the evalua-
tion criteria from [6] and measure the intersection-over-union of tracked person bound-
ing boxes and annotations in every frame. We accept detections having an overlap
greater than 0.5 as correct and report the results in terms of recall vs. false positives
per image (fppi). Fig. 8 shows the resulting performance curves when we set the max-
imum re-initialization interval to k = 5 frames (in blue), together with the baseline of
fastHOG (in green). As can be seen, our approach achieves good performance, reaching
65% and 76% recall at 0.5 fppi for Seq. A and Seq. B, respectively. As the bounding
box criterion penalizes the tracker’s property of predicting a person’s location through
occlusions (since those cases are not annotated in the test data), we additionally provide
the performance curve when filtering out tracked bounding boxes which are more than
50% occluded by other boxes (in black). This results in an additional improvement.

For comparison, we also provide the performance curve reported by [6] on Seq. A,
which is also based on HOG detections (shown in red, no such curve is available for
Seq. B). This approach integrates detections from both camera streams and thus obtains
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Fig. 8. (left) Quantitative tracking performance of our approach compared to different baselines.
(right) Track-level evaluation according to the criteria by [7].

Fig. 9. Example tracking results of our approach on several challenging test sequences.

a higher recall. Its performance should be compared to our blue curve, since no occlu-
sion removal was performed in [6]. Still, it can be seen that our approach achieves bet-
ter performance in the high-precision range, despite only using a single camera stream.
This is a result of the better data association provided by the image-level tracklets.

Fig. 8 (right) also reports a track-level evaluation according to the criteria by [7],
showing that most pedestrians are correctly tracked and only few ID switches occur.
Fig. 9 shows results of our combined tracker for both test sequences and visualizes
the obtained level-set contours. The corresponding result videos are provided on www.

mmp.rwth-aachen.de/projects/eccv2010. Our system is able to track most of
the visible pedestrians correctly in a very busy environment with many occlusions.

Efficiency Considerations. One of our goals was to reduce the dependence on the
costly detector. Even though efficient GPU implementations are now available for HOG
(e.g. [20]), the framerate is still not sufficient for real-time operation in a pure tracking-
by-detection context. In addition, the excessive power consumption of GPUs is a major
restriction for their use in mobile robotics applications. In contrast, the level-set tracking
approach employed here can be very efficiently implemented on regular CPUs. [13]
report a framerate of 85Hz for tracking a single target of size 180× 180 pixels in their
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Fig. 10. (top) Tracking performance for the two test sequences when varying the maximum re-
initialization interval; (bottom) Frequency of detector activations for both sequences for an inter-
val of 5 (first) and 10 (second) frames. The red curve shows the number of tracked pedestrians.

implementation. In our application, we track targets at a lower resolution of 80 × 100
pixels and therefore expect even faster performance once our code is fully optimized.

An important consideration in this respect is how often the pedestrian detector needs
to be activated for robust tracking performance. Our approach lets the LS tracker request
detections whenever required, but enforces a maximum re-initialization interval of k
frames. Fig. 10 shows the effective frequency of detector activations when setting this
interval to k ∈ {1, 5, 10}, together with the resulting tracking performance. A setting of
k = 5 provides the best tracking quality with a detector activation on average every 1.66
frames. By increasing the maximum interval to 10 frames, the detector activation rate
falls to every 2.71 frames at a small loss in recall that is still comparable to [6] at 0.5
fppi. Considering that [6] performed detection in both camera streams, our approach
thus requires 5.42 times less detector activations. Finally, we show the performance
when activating the detector at a fixed interval of 5 frames, without additional requests.
This results in a small drop in recall, but still yields good overall performance.

6 Conclusion

We have presented an integrated framework for mobile street-level multi-person track-
ing. Our approach combines the advantages of a fast segmentation-based tracker for
following individual persons with the robustness of a high-level multi-hypothesis track-
ing framework for performing longer-term data association. As our experiments have
shown, the approach reaches state-of-the-art performance, while requiring fewer detec-
tor evaluations than conventional tracking-by-detection approaches. Our results open
several interesting research perspectives. The requested detector activations for tracklet
re-initialization could be restricted to the tracklet’s immediate neighborhood, thus re-
sulting in further speedups. In addition, the obtained level-set segmentation could be a
possible starting point for articulated tracking that we plan to explore in future work.
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