How Robust is 3D Human Pose Estimation to Occlusion?
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Overview

* Localize body joints in 3D camera space from an RGB image

* Useful for collaborative robotics

* Much progress in the last few years, as measured on current
benchmarks, such as Human3.6M

3D Human Pose
Estimation Task

Real Environments are
More Challenging Than
Benchmarks

* QOcclusion is common in shared human-robot environments
* Current benchmarks don't systematically model this
* How well do current methods work under occlusion?

Measure Robustness to
Synthetic Occlusions
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* High frame rate inference (204 fps) on Titan X GPU
* Fully-convolutional backbone (ResNet-50) directly predicts a 16x16x16 volumetric heatmap per body joint ;
* Heatmaps are converted to coordinates with soft-argmax and are back-projected into metric 3D space, where the L1 loss is minimized

space

Evaluation * Does the occluder shape matter? Which type of training augmentation improves robustness to which type of test-time occlusion?
* Evaluation measure: mean per joint position error after skeleton alignment at root joint (MPJPE)
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Qualitative Example Key Findings

Baseline mode] Trained with VOC object aug.  * Baseline 3D pose estimator is sensitive even to low degrees of occlusion
' ° * Circular occluders are the most difficult
brediction View from left prediction View from left & o . |
(translucent: gr. truth) (translucent: gr. truth) * Training with circles improves robustness to all simple shapes

* Robustness to Pascal VOC occluders not improved by augmenting with
simple shapes

* Occlusion augmentation helps even for unoccluded test cases
% Won the PoseTrack 3D Challenge at ECCV 2018, ahead of methods using
external 2D datasets in training (details in [4])

PoseTrack’18 Validation Set Ablation

. . PoseTrack'18 Challenge Results
on Occlusion Augmentation.
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Probability of applying occlusions in each training image
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