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Abstract
We propose a novel approach for multi-person tracking-

by-detection in a particle filtering framework. In addition
to final high-confidence detections, our algorithm uses the
continuous confidence of pedestrian detectors and online
trained, instance-specific classifiers as a graded observa-
tion model. Thus, generic object category knowledge is
complemented by instance-specific information. A main
contribution of this paper is the exploration of how these
unreliable information sources can be used for multi-person
tracking. The resulting algorithm robustly tracks a large
number of dynamically moving persons in complex scenes
with occlusions, does not rely on background modeling, and
operates entirely in 2D (requiring no camera or ground
plane calibration). Our Markovian approach relies only on
information from the past and is suitable for online applica-
tions. We evaluate the performance on a variety of datasets
and show that it improves upon state-of-the-art methods.

1. Introduction
The goal of the work presented in this paper is to au-

tomatically detect and track a variable number of targets

in complex scenes using a monocular, potentially moving,

uncalibrated camera. This is a very challenging problem,

since there are many sources of uncertainty for the object

locations, e.g., measurement noise, clutter, changing back-

ground, and significant occlusions. In order to cope with

those difficulties, tracking-by-detection approaches have

become increasingly popular [2, 11, 16, 20, 26]. Such ap-

proaches involve the continuous application of a detection

algorithm in individual frames and the association of detec-

tions across frames. The main challenges when using an

object detector for tracking are that the resulting output is

unreliable and sparse, i.e., detectors only deliver a discrete

set of responses and usually yield false positives and miss-

ing detections (see Fig. 1, left). Several recent multi-object

tracking-by-detection algorithms address the resulting data

association problem by optimizing detection assignments

over a larger temporal window [1, 3, 12, 16, 21]. They use

information from future frames and locate the targets in the

current frame with a temporal delay.

Figure 1: Using the output of a person detector (left), which typi-

cally contains many false positives and missing detections, our al-

gorithm robustly tracks multiple targets in complex scenes (right).

Sequential Monte Carlo methods (or Particle Filters) [8]

offer a framework for representing the tracking uncertainty

in a Markovian manner by only considering information

from past frames. Therefore, such an approach is more suit-

able for time-critical, online applications. Okuma et al. [20]

and Cai et al. [5] combine tracking-by-detection with parti-

cle filtering by using final detections to initialize color based

tracker samples. We also adopt a particle filtering frame-

work, but we extend previous methods by several new ideas.

Most importantly, the above approaches only rely on the

final, sparse output from the object detector. In contrast, our

approach integrates the object detector itself into the track-

ing process by monitoring its continuous detection confi-
dence and using it as a graded observation model. This

idea follows the intuition that by forgoing the hard detec-

tion decision, we can impart tracking approaches with more

flexibility to handle difficult situations. Although such a

combination appears desirable, it raises a number of ques-

tions. As available object detectors have only been opti-

mized for accurate results at those locations passing the final

non-maximum suppression stage, it is not guaranteed that

the shape of the underlying confidence volume in-between

those locations will always support tracking. In addition, a
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majority of the densities’ local maxima correspond to false

positives that may deteriorate the tracking results.

A main contribution of this paper is the exploration of

how this unreliable information source can be used for ro-

bust multi-person tracking. Our algorithm achieves this ro-

bustness through a careful interplay between object detec-

tion, classification, and target tracking components: In addi-

tion to a general, class-specific pedestrian detector to local-

ize people, we train person-specific classifiers. As our expe-

riments show, the resulting approach yields a good tracking

performance in a large variety of highly dynamic scenarios.

Our approach automatically initializes a separate particle

filter for each person detected with high confidence. In or-

der to resolve the data association of final high-confidence

detections and trackers in each frame, our approach evalu-

ates a scoring function integrating the online-trained clas-

sifier, the distance to the tracked target, and a probabilistic

gating function accounting for the target size, motion direc-

tion, and velocity. If a final detection is classified as reliable

based on this function, it is mainly used to guide the par-

ticles of the associated tracker. Otherwise, the continuous

confidence of the class-specific detector and the instance-

specific classifiers is mainly used. To evaluate the reliability

of the detector confidence, we perform explicit inter-object

occlusion reasoning. Finally, the algorithm computes the

observation likelihood function of each particle filter using

the associated detection, the intermediate output of the de-

tector, and the classifier evaluated at each particle location.

For computational efficiency, we limit ourselves to a first-

order Markov model, i.e., all data associations for time t are

made at t and never reconsidered afterwards.

This paper makes the following contributions: (1) We

present a novel approach for probabilistic tracking-by-

detection in a Particle Filtering framework. (2) Our ap-

proach exploits the continuous detector confidence for ro-

bust multi-target tracking and integrates it into the observa-

tion model. (3) In order to deal with unreliable detections,

we combine this input with online-trained classifiers to re-

solve the data association. The resulting combination effec-

tively integrates generic category knowledge with person-

specific information, thereby greatly improving tracker ro-

bustness and reducing classifier drift. (4) We present exten-

sive experiments demonstrating that the proposed approach

is applicable to a wide variety of tracking scenarios ranging

from surveillance settings to highly dynamic sports scenes.

2. Related Work
A vast amount of work has been published on multi-

target tracking, and a review is beyond the scope of this

paper. While many approaches rely on background sub-

traction from one or several static cameras [3, 14, 23, 27],

recent progress in object detection has increased interest in

combining tracking and detection [2, 16, 20, 26]. However,

many methods rely on global optimization to construct con-

sistent trajectories from detections [1, 3, 12, 16, 21], which

precludes their use in an online scenario.

To better represent the state space uncertainty of a target,

Particle Filters were introduced to the vision community by

[13]. Later extensions include a representation of the joint

state space for multiple targets [24] and the combination

with an object detector for Markovian tracking-by-detection

[10, 20]. As runtime directly scales with the number of par-

ticle evaluations, those approaches face a dilemma when

additional targets appear. They can either spend an expo-

nentially growing number of particles on representing the

joint state space sufficiently well, or they can guarantee a

constant runtime by keeping the number of particles fixed,

at the price of lowering approximation accuracy. This can

be solved by using independent particle sets for each target

[5, 23], at the cost of potential problems with occlusions.

Using independent trackers requires solving a data asso-

ciation problem to assign measurements to targets. Classi-

cal approaches include JPDAF [9] and MHT [22]. However,

the computational complexity grows exponentially with the

number of targets and time steps, respectively. We stick to

a greedy scheme for making the detection-tracker assign-

ments and focus on obtaining a good scoring function in-

stead. Such an approach is also used by [5, 26], but there

the assignments are made only based on spatial distance,

without considering target appearance. This can be prob-

lematic for complex scenes with many targets and diffi-

cult background where many false positive detections oc-

cur. [26] additionally learn color histograms for each part,

which however do not always distinguish very well. In

contrast, our method additionally evaluates the output of

online-trained classifiers and a probabilistic gating func-

tion for reliable detection-tracker assignments. Recently,

a background subtraction based tracker has been presented

that also learns target-specific classifiers online [23], but

employs them only when targets split and merge.

Previous approaches exist that exploit the detection con-

fidence, but they are developed primarily for single-target

tracking and do not show a thorough evaluation for multi-

target tracking. E.g., [2, 11] exploit the confidence map of

a classifier, [17] apply classifiers with different confidence

thresholds, and [6] accumulate detection probabilities tem-

porally. In contrast, our algorithm is designed for robust

multi-target tracking, addressing its specific problems.

3. Approach
For many tracking applications, approaches should rely

only on past observations. Within this context, a Particle

Filter (PF) estimates the time-evolving posterior distribu-

tion of the target locations with a weighted set of particles.

PFs consist of a dynamic model for prediction and an obser-

vation model to evaluate the likelihood of a predicted state.
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Figure 2: The detector confidence density, which we use for the

observation model of the particle filter, is common for sliding-

window based and voting based detectors.

In this paper, we explore the idea of using the output

of an object detector for the observation model. A general

problem with this is the reliability of the resulting detec-

tions; i.e., not all persons are detected in each frame (miss-
ing detections) and some detections are not caused by a per-

son (false positive detections). These problems are demon-

strated in Fig. 1. To address them, many recent methods

rely on expensive global optimization techniques instead of

making successive, irreversible decisions at each time step,

which is a major limitation for time-critical applications.

In contrast, our algorithm for tracking-by-detection im-

plements a first-order Markov model (i.e., it only relies on

information from the current and the last time step). It

achieves the necessary robustness by integrating the infor-

mation from object detection in two ways: First, our algo-

rithm carefully assesses the detections in each frame and

maximally selects one to guide the tracker for a particular

target. For this purpose, we train a classifier for each target

during runtime (see Sec. 3.2). Second, our algorithm ad-

ditionally exploits the intermediate, continuous confidence

density of an object detector (see next paragraph). To assess

its reliability, our algorithm performs inter-object occlusion

reasoning (see Sec. 3.3). Finally, the tracker integrates both

types of detector output into the observation likelihood.

Detection Confidence Density. At the core of our ap-

proach lies the realization that current state-of-the-art per-

son detectors all build up some form of confidence density
as one stage of their pipeline. This is true for both sliding-

window based detectors such as HOG [7] and for feature-

based detectors such as ISM [15]. In the sliding-window

case, this density is implicitly sampled in a discrete 3D grid

(location and scale) by evaluating the different detection

windows with a classifier. In the ISM case, it is explicitly

created in a bottom-up fashion through probabilistic votes

cast by matching, local features (see Fig. 2). In order to ar-

rive at individual detections, both types of approaches try

to find local maxima in the density volume and then apply

some form of non-maximum suppression. This reduces the

result set to a manageable number of high-quality hypothe-

ses, but it also throws away potentially useful information.

Fig. 3 illustrates both types of output for ISM (left) and

HOG (right). As can be seen, there are situations where a

detector did not yield a final detection but a tracking algo-

Figure 3: Detector output of ISM (left) and HOG (right). We

show final detections as green bounding boxes and the detector

confidence density in blue (low) to red (high). The density often

contains useful information at the location of missing detections.

rithm could still be guided using the intermediate output.

On the other hand, both detectors also show a high confi-

dence density on certain background structures.

3.1. Particle Filtering
Bootstrap Filter. Our tracking algorithm is based on es-

timating the distribution of each target state by a particle

filter. The state x = {x, y, u, v} consists of the 2D image

position (x, y) and the velocity components (u, v). There-

fore, we employ the bootstrap filter, where the state transi-

tion density (or “prior kernel”) is used as importance distri-

bution to approximate the probability density function. For

sequences with abrupt, fast camera motion, we apply iter-

ative likelihood weighting [19]. For details about particle

filtering, we refer to [8]. The importance weight w
(i)
t for

each particle i at time step t is then described by:

w
(i)
t ∝ w

(i)
t−1 · p(yt|x(i)

t ). (1)

Since re-sampling is carried out in each time step using a

fixed number of N particles, w
(i)
t−1 = 1

N is a constant and can

be ignored. Thus, (1) reduces to the conditional likelihood

of a new observation yt given the propagated particles x
(i)
t ,

which we estimate as described in Sec. 3.3.

Motion Model. To propagate the particles, we use a

constant velocity motion model:

(x, y)t = (x, y)t−1 + (u, v)t−1 ·Δt + ε(x,y) (2)

(u, v)t = (u, v)t−1 + ε(u,v). (3)

The process noise ε(x,y), ε(u,v) for each state variable is in-

dependently drawn from zero-mean Normal distributions.

The variance σ2
(x,y) for the position noise changes with the

size of the tracking target, whereas the variance σ2
(u,v) for

the velocity noise is inversely proportional to the number of

successfully tracked frames. Hence, the longer a target is

tracked successfully, the less the particles are spread. Δt is

dependent on the frame-rate of the sequence. The size of

the target is estimated as described below.

Tracker Initialization and Termination. Object de-

tection yields fully automatic initialization. The algorithm

initializes a new tracker for an object that has subsequent
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Figure 4: The result of the probabilistic gating function (Eq. 5)

depends on the velocity of the target, resulting in radial isolines

(left) or different 2D cone angles (left, right).

detections with overlapping bounding boxes, which are nei-

ther occluded nor associated to an already existing tracker

(see Sec. 3.2). In order to avoid persistent false positives

from similar-looking background structures (such as win-

dows, doors, or trees), we only initialize trackers from de-

tections that appear in a zone along the image borders for

sequences where this is reasonable (see Sec. 4). The initial

sample positions are drawn from a Normal distribution cen-

tered at the detection center. The initial size corresponds

to the detection size, and the motion direction is set to be

orthogonal to the closest image border. A tracker only sur-

vives a limited number of frames without associated detec-

tion and is then automatically terminated.

Tracker Position and Size. Although represented by a

(possibly multi-modal) distribution, a single position of the

tracking target is sometimes required (e.g., for visualiza-

tion). We estimate the position by the strongest mode of the

distribution, found using mean-shift. Instead of including

the size of the target in the state space of the particles, the

target size is set to the average of the last four associated

detections. In our experiments, this yields better results,

possibly because of the exponentially growing number of

particles necessary for estimating a larger state space.

3.2. Data Association
In order to decide which detection should guide which

tracker, we solve a data association problem, assigning at

most one detection to at most one target. The optimal

single-frame assignment can be obtained by the Hungarian

algorithm. In our experiments, we however found that the

following greedy algorithm achieves equivalent results at

lower computational cost (also reported by [26]).

The matching algorithm works as follows: First, a

matching score matrix S for each pair (tr, d) of tracker tr
and detection d is computed as described below. Then, the

pair (tr∗, d∗) with maximum score is iteratively selected,

and the rows and columns belonging to tracker tr and de-

tection d in S are deleted. This is repeated until no further

valid pair is available. Finally, only the associated detec-

tions with a matching score above a threshold are used, en-

suring that a selected detection actually is a good match to

a target. Consequently, the chances are high that often no

detection is associated with a target, but if one is, it can be

used to strongly influence the tracker.

Figure 5: The detector confidence reliability function (Eq. 7)

evaluated for tracker a returns a high value if another tracker b
with associated detection is nearby (right).

Matching Score. Our data association method evaluates

a matching function for each tracker-detection pair (tr, d)
(the higher the score, the better the match between detection

and tracking target). The matching function s(tr, d) evalu-

ates the distance between the detection d and each particle

p of tracker tr. It employs a classifier ctr(d) trained for tr
and evaluated for d (see the following paragraphs):

s(tr, d) = g(tr, d) · (ctr(d) + α ·
N∑

p∈tr

pN (d− p)), (4)

where pN (d− p) ∼ N (d− p; 0, σ2
det) denotes the Normal

distribution evaluated for the distance between d and p, and

g(tr, d) is a gating function described next.

Gating Function. Not only the distance of a detection

to the tracker is important, but also its location with respect

to velocity and motion direction of the target. Therefore, a

probabilistic gating function g(tr, d) additionally assesses

each detection. It consists of the product of two probabili-

ties, both drawn from Normal distributions.

g(tr, d) = p(sized|tr)p(posd|tr) (5)

=

{
pN ( sizetr−sized

sizetr
) · pN (|d− tr|) if |vtr| < τv

pN ( sizetr−sized

sizetr
) · pN (dist(d, vtr)) otherwise.

The first factor measures the agreement between the sizes

of target and detection. The second term implements the in-

tuition that fast moving objects cannot change their course

so abruptly because of their inertia. Therefore, it depends

on the velocity of the target; if it is below a threshold τv ,

the velocity is ignored and the term is proportional to the

distance from the tracker position tr to the detection d. In

this case of an (almost) motionless target, the isolines of the

function are radial (see Fig. 4, left). Otherwise, the second

term depends on dist(d, vtr), which is the shortest distance

between the detection d and the line given by the motion

direction vtr = (u, v) of the tracker. The variance for the

second term is chosen such that it is proportional to the dis-

tance from the tracker to the detection projected to vtr. In

this case, the isolines of Eq. 5 form a 2D cone (see Fig. 4).

The variance is made inversely proportional to the velocity,

such that the angle of the 2D cone is smaller the higher the

speed of a target is (see Fig. 4).1

1The second term of Eq. (5) is equivalent to an angular error that is

correctly measured by the von Mises distribution, but can be closely ap-

proximated by a Gaussian distribution in the 1D case [18].
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Boosted Classifiers. To assess the similarity of a

tracker-detection pair, we train a boosted classifier of weak

learners for each tracking target. The classifier is similar

to [11] and is trained online on one target against all oth-

ers. Patches used as positive training examples are sam-

pled from the bounding box of the associated detection.

The negative training set is sampled from nearby targets,

augmented by background patches. The classifier is only

updated on non-overlapping detections. After each update

step, we keep a constant number of the most discriminative

weak learners. The output of the classifier is linearly scaled

to the range [−1, 1]. The weak learners (feature types) are

selected by evaluating the classifier for different combina-

tions of color and appearance features (see Sec. 4).

3.3. Observation Model
To compute the weight wtr,p for a particle p of the tracker

tr, our algorithm estimates the conditional likelihood of the

new observation given the propagated particle. For this pur-

pose, we combine different sources of information, namely

the associated detection d∗, the intermediate output of the

detection algorithm, and the output of the classifier ctr:

wtr,p = p(yt|x(i)
t ) = (6)

β · I(tr) · pN (p− d∗)︸ ︷︷ ︸
detection

+ γ · dc(p) · po(tr)︸ ︷︷ ︸
det. confidence density

+ η · ctr(p)︸ ︷︷ ︸
classifier

where the parameters β, γ, η are set experimentally. Each

term is described below in detail.

Detection Term. The first term computes the distance

between the particle p and the associated detection d∗, eval-

uated under a Normal distribution pN . I(tr) is an indica-

tor function that returns 1 if a detection was associated to

the tracker and 0 otherwise. When a matching detection is

found, this term robustly guides the particles.

Detector Confidence Density Term. The second term

evaluates the intermediate output of the object detector by

computing the detector confidence density dc(p) at the par-

ticle position. To estimate dc(p) for the ISM detector [15],

we compute the local density ρ in the Hough voting space

using a cubical kernel adapted to the target object size and

scale it with f = 1 − exp(−ρ) to [0, 1]. For the HOG de-

tector [7], dc(p) corresponds to the raw SVM confidence

output before applying non-maximum suppression.

Unfortunately, the detector confidence density is not al-

ways reliable; often, an erroneously high value is caused by

background structures (see Fig. 3). To assess its reliabil-

ity, our algorithm therefore performs inter-object occlusion
reasoning using the following rationale: if another tracker

tr′ is nearby that is associated with a detection, the detec-

tor confidence density around this image location is most

probably caused by the foreground and not by background

structure. Consequently, the detector probably did not find

both targets because of the occlusion. In this case, we as-

sume that the detection confidence density is meaningful in

this image area and can be used to guide the tracker.

To assess the reliability of the detector confidence den-
sity, our tracking algorithm evaluates a function,

po(tr) =

⎧⎪⎪⎨
⎪⎪⎩

1 if I(tr) = 1
max

tr′:I(tr′)=1
pN (tr − tr′) elif ∃I(tr′) = 1

0 else

(7)

which is used in (6) to weight the influence of the detector

confidence density. The closer tr′ is, the more reliable is the

detector output at the position of tracker tr. In Fig. 5, the

function values are illustrated for the tracker of the person

entering the scene from the right.

Classifier Term. For the third term of Eq. (6), the classi-

fier trained for the target tr is evaluated for the image patch

at the particle location with the corresponding size. This

term uses color and texture information (see Sec. 3.2 and

4) to assess the new particle position and complements the

terms from the detector output. While other tracking meth-

ods are purely based on such classifier output (c.f . [11]), this

adds additional robustness to our particle filter approach. In

addition, the combination of generic category knowledge

with person-specific information makes our approach more

robust to classifier drift than e.g. [11].

Influence of Observation Likelihood Terms. The in-

fluence of the different observation likelihood terms in (6)

is demonstrated on a simple sequence in Fig. 6. As can be

seen, certain background structures (tram tracks and road

markings) cause false positive detections. In Fig. 6(a), both

targets are correctly associated with a detection (dashed

bounding boxes), based on which the trackers are mainly

guided. In contrast, Fig. 6(b) shows a state where no de-

tection is assigned to them; as a result, the particles are

weighted (almost) uniformly. In Fig. 6(c), the particles of

the blue tracker are weighted mainly based on the detector

confidence density term, because no detection is available.

As the red tracker is nearby and is associated with a detec-

tion, the detector confidence for the blue tracker is assumed

to be high. Between the images in Figs. 6(d) and 6(e), a

bus causes a long occlusion (for 50 frames) during which

false positive detections are rejected by the classifier. This

is essential for the success of the tracker.

Fig. 7 shows erroneous tracking results if the density

or classifier term in Eq. (6) have too much influence (con-

trolled by the parameters β, γ, η). In Fig. 7 (left), the tracker

is misguided by the detection confidence density term. In

Fig. 7 (right), the tracker is misguided because a part of the

roof of the bus was visible in detections used for updating

the classifier. In our experiments, we kept β and η fixed and

only adapted γ for some sequences (as described below).
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(a) (b) (c) (d) (e)

Figure 6: Example tracking results demonstrating the influence of the different observation likelihood terms in Eq. (6) (see text; green:

ISM detection bounding boxes; red and blue: tracker particle sets, weights are proportional to color intensity).

Figure 7: Erroneous tracking results if (a) the detector confidence

density or (b) the classifier have too much influence (c.f . Fig. 6(e)).

4. Experimental Results
Experimental Setup. We evaluate the tracking algorithm

on five challenging sequences: ETHZ Central [16], TUD

Crossing [1], i-Lids AB [12], UBC Hockey [20], and our

own Soccer dataset2. They are taken from both static and

moving cameras and vary with respect to viewpoint, type of

movement, and amount of occlusion, which demonstrates

the robustness of our approach (see Fig. 9 and the videos).

Unfortunately, there is no generally accepted benchmark

available for multi-person tracking. Therefore, most related

publications have carried out experiments on their own se-

quences, which we have tried to combine.

In all sequences, we only use 2D information and do not

assume any scene knowledge (e.g., ground plane calibration

or entry/exit zones, c.f ., [12, 16]). Sticking to the detectors

originally used with these sequences, we employ the ISM

detector [15] for ETH Central, TUD crossing, and UBC

Hockey, and the HOG detector [7] for i-Lids and Soccer.

We use the publicly available, pre-trained versions (i.e., not

specifically trained for any test sequence, c.f ., [20]). Given

the detector output, the runtime of our unoptimized code

is 2–0.4 fps (Intel Core2Duo 2.13GHz), depending on the

number of detections and targets in a sequence.3

All parameters have been set experimentally, but most

remained identical for all sequences. This was the case for

the variances σ2 in Eqs. (4)-(7), as well as for β, η in Eq. (6).

γ was increased for TUD Crossing to overcome long-lasting

overlaps between detections. Overall, β, γ, η were chosen

such that the ratio between the respective terms are about

20:2:1 for a tracker with associated detection. On average,

a detection is selected and associated to a tracker every 2–

10 frames, depending on the sequence. To handle abrupt

motion changes in the sports sequences, we increased σ2 in

Eqs. (2), (3) to make the motion model more flexible.

2The references indicate publications with state-of-the-art results.
3Note that the HOG detector can be implemented in real-time [25].

Dataset Prec. Accur. F. Neg. F. Pos. ID Sw.

ETH Centr. 70.0% 72.9% 26.8% 0.3% 0

ETH Centr. [16] 66.0% 33.8% 51.3% 14.7% 5

UBC Hockey 57.0% 76.5% 22.3% 1.2% 0

UBC Hockey [20] 51.0% 67.8% 31.3% 0.0% 11

i-LIDS easy 67.0% 78.1% 16.4% 5.3% 18

i-LIDS med* 66.0% 76.0% 22.0% 2.0% 2

i-LIDS [12] - 68.4% 29.0% 13.7% -

i-LIDS [26] - 55.3% 37.0% 22.8% -

TUD Cross. 71.0% 84.3% 14.1% 1.4% 2

Soccer 67.0% 85.7% 7.9% 6.2% 4

Table 1: CLEAR MOT results on 5 datasets demonstrate the per-

formance of our algorithm compared to state-of-the-art methods.

Classifier Comparison. To select features for the

boosted classifier (i.e., number, type, combination of fea-

tures), we evaluate the ability of the classifiers to distin-

guish between the correct target and all other targets. For

this purpose, we compare the classifiers on different se-

quences using annotated ground truth. Ideally, a classifier

returns a score of +1 for the bounding box of the target it

is trained for and −1 for all other input. Fig. 8 shows the

difference between the classifier score on the annotated tar-

get and the highest score on all other targets for different

features and combinations (RGI/RGB/HS/Lab=red-green-

intensity/RGB/hue-saturation/Lab histograms; LBP=local

binary patterns; Haar=Haar wavelets). The higher the score

difference, the better is the ability of the classifier to dis-

tinguish between targets. In Figs. 8(a) and 8(b), we show

a detailed evaluation for TUD Crossing. As can be seen,

the number of features is not critical. However, the choice

of color feature type and number of histogram bins heavily

affects the result and the average computation time (which

includes training and testing). Fig. 8(c) compares differ-

ent feature combinations on three test sequences. Based on

these evaluations, we use 50 RGI and LPB features with 3
bins per color channel for all sequences.

Tracking Evaluation. We use the CLEAR MOT met-

rics for evaluation. It returns a precision score (intersection

over union of bounding boxes) and an accuracy score (com-

posed of false negative rate, false positive rate, and number

of ID switches). As can be seen in table 1, the sequences are

tracked with high precision and accuracy. The false nega-
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Figure 8: Evaluation for classifier feature selection. The plots show the difference between the classifier score on the annotated target and

the highest score on all other targets for different features, averaged over all frames and targets.

tives occur if persons are annotated but not detected. This

happens if a person is very close to another one (ETH Cen-

tral, TUD Crossing), is sitting (ETH Central), or is partially

outside of the image (i-Lids). The ID switches in i-Lids

happen mainly if a person is occluded (e.g., by the pillar)

and a new tracker is initialized for a reappearing target. For

sports sequences, the ability of the classifier to differenti-

ate between players is decreased because of their similar

appearance.

We compare our method with the state-of-the-art results

reported for these sequences4 (see Tab. 1): On ETH Cen-

tral with [16] (using provided trajectories), on UBC Hockey

with [20] (obtained using their publicly available Matlab

code on their data), and on i-Lids as reported by [12]5.

In all cases, our precision and accuracy results outperform

the previously published results, even though our algorithm

does not use global optimization [12, 16], a detector specif-

ically trained for the appearance in the sequence [20], cam-

era calibration [16], or a scene model [12].

5. Conclusion
We have presented a novel approach for tracking-by-

detection in a particle filtering framework. As our expe-

riments show, the proposed approach achieves robust track-

ing performance in a large variety of application scenarios

and outperforms previous methods. The key factors for this

performance are: (1) a careful selection of the detections

that influence a tracker; (2) use of an online trained classi-

fier for data association; and (3) a combination of final de-

tections, continuous detector confidence and classifier out-

put to guide particles. While our approach only uses 2D

information, additional knowledge about the scene (e.g., a

ground plane to improve detections), about the appearance

of persons, or about the camera motion would be beneficial.
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