Machine Learning – Lecture 15
Convolutional Neural Networks
05.12.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline
- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Topics of This Lecture
- Recap: Tricks of the Trade
 - Initialization
 - Dropout
 - Batch Normalization
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

Recap: Reducing the Learning Rate
- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.
- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.
 - Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower/impossible after that.

Recap: Data Augmentation
- Effect
 - Much larger training set
 - Robustness against expected variations
- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Recap: Normalizing the Inputs
- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.
- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loève expansion).
Recap: Commonly Used Nonlinearities

- Sigmoid
 \[g(a) = \frac{1}{1 + e^{-a}} \]
- Hyperbolic tangent
 \[g(a) = \tanh(a) = 2\sigma(2a) - 1 \]
- Softmax
 \[g(a) = \frac{e^{-a_i}}{\sum_j e^{-a_j}} \]

Extension: ReLU

- Another improvement for learning deep models
 - Use Rectified Linear Units (ReLU)
 \[g(a) = \max(0, a) \]
 - Effect: gradient is propagated with a constant factor
 \[\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases} \]

Advantages
- Much easier to propagate gradients through deep networks.
- We do not need to store the ReLU output separately
 - Reduction of the required memory by half compared to tanh!

⇒ ReLU has become the de-facto standard for deep networks.

Further Extensions

- Rectified linear unit (ReLU)
 \[g(a) = \max(0, a) \]
- Leaky ReLU
 \[g(a) = \max(\alpha a, a) \]
 - Avoids stuck-at-zero units
 - Weaker offset bias
- ELU
 \[g(a) = \begin{cases} a, & x < 0 \\ e^{x} - 1, & x \geq 0 \end{cases} \]
 - No offset bias anymore
 - BUT: need to store activations

Initializing the Weights

- Motivation
 - The starting values of the weights can have a significant effect on the training process.
 - Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.

- Guideline (from [LeCun et al., 1998] book chapter)
 - Assuming that
 - The training set has been normalized
 - The recommended sigmoid \(f(x) = 1.7159\tanh\left(\frac{x}{2}\right) \) is used
 - The initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and variance
 \[\sigma^2 = \frac{1}{n_{in}} \]
 where \(n_{in} \) is the fan-in (#connections into the node).
Historical Sidenote

- Apparently, this guideline was either little known or misunderstood for a long time
 - A popular heuristic (also the standard in Torch) was to use
 \[
 W \sim U \left[-\frac{1}{\sqrt{n_{\text{in}}}}, \frac{1}{\sqrt{n_{\text{in}}}} \right]
 \]
 - This looks almost like LeCun’s rule. However...
- When sampling weights from a uniform distribution \([a,b]\)
 - Keep in mind that the standard deviation is computed as
 \[
 \sigma^2 = \frac{1}{12} (b-a)^2
 \]
 - If we do that for the above formula, we obtain
 \[
 \sigma^2 = \frac{1}{6} \left(\frac{2}{\sqrt{n_{\text{in}}}} \right)^2 = \frac{1}{3} n_{\text{in}}
 \]
 - \(\Rightarrow\) Activations & gradients will be attenuated with each layer! (bad)

Glorot Initialization

- Breakthrough results
 - In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a more general method for automatic initialization.
 - This new initialization massively improved results and made direct learning of deep networks possible overnight.
 - Let’s look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS 2010.

Analysis

- Variance of neuron activations
 - Suppose we have an input \(X\) with \(n\) components and a linear neuron with random weights \(W\) that splits out a number \(Y\)
 - What is the variance of \(Y\)?
 \[
 Y = W_1X_1 + W_2X_2 + \cdots + W_nX_n
 \]
 - If inputs and outputs have both mean 0, the variance is
 \[
 \text{Var}(W_iX_i) = E[X_i]^2 \text{Var}(W_i) + E[W_i]^2 \text{Var}(X_i) + \text{Var}(W_i) \text{Var}(X_i)
 \]
 \[
 = \text{Var}(W_i) \text{Var}(X_i)
 \]
 - If the \(X_i\) and \(W_i\) are all i.i.d, then
 \[
 \text{Var}(Y) = \text{Var}(W_1X_1 + W_2X_2 + \cdots + W_nX_n) = n \text{Var}(W_1) \text{Var}(X_1)
 \]
 - The variance of the output is the variance of the input, but scaled by \(n\) \text{Var}(W_i).

Analysis (cont’d)

- Variance of neuron activations
 - If we want the variance of the input and output of a unit to be the same, then \(\text{Var}(W_i)\) should be 1. This means
 \[
 \text{Var}(W_i) = \frac{1}{n_{\text{in}}}
 \]
 - If we do the same for the backpropagated gradient, we get
 \[
 \text{Var}(W_i) = \frac{1}{n_{\text{out}}}
 \]
 - As a compromise, Glorot & Bengio proposed to use
 \[
 \text{Var}(W_i) = \frac{2}{n_{\text{in}} + n_{\text{out}}}
 \]
 - \(\Rightarrow\) Randomly sample the weights with this variance. That’s it.

Sidenote

- When sampling weights from a uniform distribution \([a,b]\)
 - Again keep in mind that the standard deviation is computed as
 \[
 \sigma^2 = \frac{1}{12} (b-a)^2
 \]
 - Glorot initialization with uniform distribution
 \[
 W \sim U \left[\frac{\sqrt{3}}{\sqrt{n_{\text{in}} + n_{\text{out}}}}, \frac{\sqrt{3}}{\sqrt{n_{\text{in}} + n_{\text{out}}}} \right]
 \]
 - Or when only taking into account the fan-in
 \[
 W \sim U \left[\frac{\sqrt{3}}{\sqrt{n_{\text{in}}}}, \frac{\sqrt{3}}{\sqrt{n_{\text{in}}}} \right]
 \]
 - If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years earlier…

Extension to ReLU

- Important for learning deep models
 - Rectified Linear Units (ReLU)
 \[
 g(a) = \max\{0,a\}
 \]
 - Effect: gradient is propagated with a constant factor
 \[
 \frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}
 \]
 - We can also improve them with proper initialization
 - However, the Glorot derivation was based on tanh units, linearily assumption around zero does not hold for ReLU.
 - He et al. made the derivations, derived to use instead
 \[
 \text{Var}(W_i) = \frac{2}{n_{\text{in}}}
 \]
Topics of This Lecture

• Recap: Tricks of the Trade
 ➢ Initialization
 ➢ Dropout
 ➢ Batch Normalization

• Convolutional Neural Networks
 ➢ Neural Networks for Computer Vision
 ➢ Convolutional Layers
 ➢ Pooling Layers

• CNN Architectures
 ➢ LeNet
 ➢ AlexNet
 ➢ VGGNet
 ➢ GoogLeNet

Batch Normalization [Ioffe & Szegedy '14]

• Motivation
 ➢ Optimization works best if all inputs of a layer are normalized.

• Idea
 ➢ Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 ➢ I.e., perform transformations on all activations and undo those transformations when backpropagating gradients
 ➢ Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.
 ➢ Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)

• Effect
 ➢ Much improved convergence (but parameter values are important!)
 ➢ Widely used in practice

Dropout [Srivastava, Hinton '12]

• Idea
 ➢ Randomly switch off units during training (a form of regularization).
 ➢ Change network architecture for each minibatch, effectively training many different variants of the network.
 ➢ When applying the trained network, multiply activations with the probability that the unit was set to zero during training.
 ➢ Greatly improved performance

Why Hierarchical Multi-Layered Models?

• Motivation 1: Visual scenes are hierarchically organized

Neural Networks for Computer Vision

• How should we approach vision problems?
 ➢ Face Y/N?

• Architectural considerations
 ➢ Input is 2D ➞ 2D layers of units
 ➢ No pre-segmentation ➞ Need robustness to misalignments
 ➢ Vision is hierarchical ➞ Hierarchical multi-layered structure
 ➢ Vision is difficult ➞ Network should be deep

Face Y/N?
Why Hierarchical Multi-Layered Models?

- Motivation 2: Biological vision is hierarchical, too

/interceptual cortex

V4: different textures

V1: simple and complex cells

Photoreceptors, retina

Object

Object parts

Primitive features

Input image

Face

Eyes, nose, ...

Oriented edges

Face image

Hubel/Wiesel Architecture

Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Hubel & Weisel

featural hierarchy

Topographical mapping

Hyper-complex cells

Complex cells

Simple cells

Photoreceptors, retina

Low level

Mid level

High level

What's Wrong With Standard Neural Networks?

- Complexity analysis
 - How many parameters does this network have?
 \[|\theta| = \sum_{i} w_i^2 + b_i \]
 - For a small \(32 \times 32\) image
 \[|\theta| = 3 \cdot 32^2 + 3 \cdot 10^6 \]

- Consequences
 - Hard to train
 - Need to initialize carefully
 - Convolutional nets reduce the number of parameters!

An MLP with 1 hidden layer can implement any function (universal approximator)

However, if the function is deep, a very large hidden layer may be required.

Convolutional Networks: Intuition

- Fully connected network
 - E.g. \(1000 \times 1000\) image
 - \(1M\) hidden units
 \[\Rightarrow 1T \text{ parameters!} \]

- Ideas to improve this
 - Spatial correlation is local

Convolutional Neural Networks (CNN, ConvNet)

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Convolutional Networks: Intuition

- Locally connected net
 - E.g. 1000x1000 image
 - 1M hidden units
 - 10x10 receptive fields
 - \Rightarrow 100M parameters!
- Ideas to improve this
 - Spatial correlation is local
 - Want translation invariance

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Learn multiple filters

- E.g. 1000x1000 image
- 100 filters
- 10x10 filter size
- \Rightarrow 10k parameters

Result: Response map

- Size: 1000x1000x100
- Only memory, not params!

Important Conceptual Shift

- Before
 - Full connectivity
 - 32x32x3 weights
- Now: Local connectivity
 - One neuron connects to, e.g., 5x5x3 region
 - Only 5x5x3 shared weights.

Convolution Layers

- Note: Connectivity is
 - Local in space (5x5 inside 32x32)
 - But full in depth (all 3 depth channels)
- Example: 32x32x3 volume
 - Before: Full connectivity
 - 32x32x3 weights
 - Now: Local connectivity
 - One neuron connects to, e.g., 5x5x3 region
 - Only 5x5x3 shared weights.
- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single \([1 \times 1 \times \text{depth}] \) depth column in output volume.

Naming convention:

Example:
- \(7 \times 7 \) input
- assume \(3 \times 3 \) connectivity
- stride 1

\[\Rightarrow 5 \times 5 \text{ output} \]

Example:
- \(7 \times 7 \) input
- assume \(3 \times 3 \) connectivity
- stride 1

- Replicate this column of hidden neurons across space, with some stride.
Convolution Layers

- Replicate this column of hidden neurons across space, with some stride.

Example:

\[
\begin{array}{ccc}
7 \times 7 \text{ input} \\
\text{assume } 3 \times 3 \text{ connectivity} \\
\text{stride 1} \\
\Rightarrow 5 \times 5 \text{ output}
\end{array}
\]

What about stride 2?

Activation Maps of Convolutional Filters

- Each activation map is a depth slice through the output volume.

Effect of Multiple Convolution Layers

- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.
Let’s assume the filter is an eye detector.
- How can we make the detection robust to the exact location of the eye?

Solution:
- By pooling (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.

Max Pooling
- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

- Note
 - Pooling happens independently across each slice, preserving the number of slices.

CNNs: Implication for Back-Propagation
- Convolutional layers
 - Filter weights are shared between locations
 - Gradients are added for each filter location.

Topics of This Lecture
- Recap: Tricks of the Trade
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

ImageNet Challenge 2012

- ImageNet
 - ~1M labeled internet images
 - 20k classes
 - Human labels via Amazon Mechanical Turk

- Challenge (ILSVRC)
 - 1.2 million training images
 - 1000 classes
 - Goal: Predict ground-truth class within top-5 responses
 - Currently one of the top benchmarks in Computer Vision

B. Leibe

CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^6 images instead of 10^3)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - 16.4% error (top-5) vs. 26.2% for the next best approach
 - A revolution in Computer Vision
 - Acquired by Google in Jan ’13, deployed in Google+ in May ’13

B. Leibe

CNN Architectures: VGGNet (2014/15)

- Main ideas
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

- Results
 - Improved ILSVRC top-5 error rate to 6.7%

B. Leibe

CNN Architectures: VGGNet (2014/15)
Comparison: AlexNet vs. VGGNet

- Receptive fields in the first layer
 - AlexNet: 11×11, stride 4
 - Zeiler & Fergus: 7×7, stride 2
 - VGGNet: 3×3, stride 1

- Why that?
 - If you stack a 3×3 layer on top of another 3×3 layer, you effectively get a 5×5 receptive field.
 - With three 3×3 layers, the receptive field is already 7×7.
 - But much fewer parameters: $3^3 \times 27$ instead of $7^2 \times 49$.
 - In addition, non-linearities in-between 3×3 layers for additional discriminativity.

- Main ideas
 - "Inception" module as modular component
 - Learns filters at several scales within each module

Results on ILSVRC

- VGGNet and GoogLeNet perform at similar level
 - Comparison: human performance ~5% [Karpathy]

GoogLeNet Visualization

GoogLeNet Visualization

Results on ILSVRC

- VGGNet and GoogLeNet perform at similar level
 - Comparison: human performance ~5% [Karpathy]
Understanding the ILSVRC Challenge

- Imagine the scope of the problem!
 - 1000 categories
 - 1.2M training images
 - 50k validation images

- This means...
 - Speaking out the list of category names at 1 word/s...
 ...takes 15mins.
 - Watching a slideshow of the validation images at 2s/image...
 ...takes a full day (24h+).
 - Watching a slideshow of the training images at 2s/image...
 ...takes a full month.

More Finegrained Classes

- Quirks and Limitations of the Data Set
 - Generated from WordNet ontology
 - Some animal categories are overrepresented
 - E.g., 120 subcategories of dog breeds

 ⇒ 6.7% top-5 error looks all the more impressive

References and Further Reading

- LeNet

- AlexNet

- VGGNet
 - K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

- GoogLeNet
References and Further Reading

- ResNet