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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
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Topics of This Lecture

• Learning Multi-layer Networks
 Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 3
B. Leibe
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• One output node per class

• Outputs

 Linear outputs With output nonlinearity

 Can be used to do multidimensional linear regression or 

multiclass classification.

Recap: Perceptrons

4
B. LeibeSlide adapted from Stefan Roth

Input layer

Weights

Output layer
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• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Recap: Non-Linear Basis Functions

5
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)
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Recap: Multi-Layer Perceptrons

• Adding more layers

• Output

6
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth

Mapping (learned!)
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Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight          in the direction of the gradient            

7
B. Leibe

L2 loss 

L2 regularizer

(“weight decay”) 
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Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

8
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

12
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Excursion: Chain Rule of Differentiation

• One-dimensional case: Scalar functions

13
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Excursion: Chain Rule of Differentiation

• Multi-dimensional case: Total derivative

 Need to sum over all paths that lead to the target variable x.

14
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

 With increasing depth, there will be exponentially many paths!

 Infeasible to compute this way.

15
B. Leibe
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Obtaining the Gradients

• Approach 2: Numerical Differentiation

 Given the current state W(¿), we can evaluate E(W(¿)).

 Idea: Make small changes to W(¿) and accept those that improve 

E(W(¿)).

 Horribly inefficient! Need several forward passes for each weight. 

Each forward pass is one run over the entire dataset!
16
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Obtaining the Gradients

• Approach 3: Incremental Analytical Differentiation

 Idea: Compute the gradients layer by layer.

 Each layer below builds upon the results of the layer above.

 The gradient is propagated backwards through the layers.

 Backpropagation algorithm

17
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Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

18
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm
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• Efficient propagation scheme

 𝑦𝑖
(𝑘−1)

is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer k and multiply with 𝑦𝑖
(𝑘−1)

. 

Backpropagation Algorithm

22
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Summary: MLP Backpropagation

• Forward Pass

for  k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

23
B. Leibe

• Backward Pass

for  k = l, l-1, ...,1 do

endfor
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Analysis: Backpropagation

• Backpropagation is the key to making deep NNs tractable

 However...

• The Backprop algorithm given here is specific to MLPs

 It does not work with more complex architectures,

e.g. skip connections or recurrent networks!

 Whenever a new connection function induces a

different functional form of the chain rule, you 

have to derive a new Backprop algorithm for it.

 Tedious...

• Let’s analyze Backprop in more detail

 This will lead us to a more flexible algorithm formulation

24
B. Leibe Image source: colourbox.de, thinkstock
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Topics of This Lecture

• Learning Multi-layer Networks
 Recap: Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 25
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Computational Graphs

• We can think of mathematical expressions as graphs

 E.g., consider the expression

 We can decompose this into

the operations

and visualize this as a computational graph.

• Evaluating partial derivatives       in such a graph

 General rule: sum over all possible paths from Y to X

and multiply the derivatives on each edge of the path together.
26
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Factoring Paths

• Problem: Combinatorial explosion

 Example:

 There are 3 paths from X to Y and 3 more from Y to Z.

 If we want to compute       , we need to sum over 3£3 paths:

 Instead of naively summing over paths, it’s better to factor them

27
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Efficient Factored Algorithms

• Efficient algorithms for computing the sum 

 Instead of summing over all of the paths explicitly, compute

the sum more efficiently by merging paths back together at

every node. 
28
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Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Why Do We Care?

• Let’s consider the example again

 Using forward-mode differentiation 

from b up...

 Runtime: O(#edges)

 Result: derivative of every node

with respect to b.

29
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Why Do We Care?

• Let’s consider the example again

 Using reverse-mode differentiation 

from e down...

 Runtime: O(#edges)

 Result: derivative of e with 

respect  to every node.

 This is what we want to compute in Backpropagation!

 Forward differentiation needs one pass per node. With backward 

differentiation we can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

30
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Topics of This Lecture

• Learning Multi-layer Networks
 Recap: Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
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Obtaining the Gradients

• Approach 4: Automatic Differentiation

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the 

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
32
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Modular Implementation

• Solution in many current Deep Learning libraries

 Provide a limited form of automatic differentiation

 Restricted to “programs” composed of “modules” with a

predefined set of operations.

• Each module is defined by two main functions

1. Computing the outputs y of the module given its inputs x

where x, y, and intermediate results are stored in the module.

2. Computing the gradient E/x of a scalar cost w.r.t. the 

inputs x given the gradient E/y w.r.t. the outputs y

33
B. Leibe
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Sidenote: Implementing Softmax Correctly

• Softmax output 

 De-facto standard for multi-class outputs

• Practical issue

 Exponentials get very big and can have vastly different magnitudes.

 Trick 1: Do not compute first softmax, then log,

but instead directly evaluate log-exp in the nominator

and log-sum-exp in the denominator.

 Trick 2: Softmax has the property that for a fixed vector b

 Subtract the largest weight vector wj from the others.

35
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Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

• Recall: Basic update equation

• Main questions

 On what data do we want to apply this?

 How should we choose the step size ´ (the learning rate)?

 In which direction should we update the weights?
37
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Stochastic vs. Batch Learning

• Batch learning

 Process the full dataset at

once to compute the 

gradient.

• Stochastic learning

 Choose a single example

from the training set.

 Compute the gradient only

based on this example

 This estimate will generally

be noisy, which has some

advantages.
38
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Stochastic vs. Batch Learning

• Batch learning advantages

 Conditions of convergence are well understood.

 Many acceleration techniques (e.g., conjugate gradients) only 

operate in batch learning.

 Theoretical analysis of the weight dynamics and convergence rates 

are simpler.

• Stochastic learning advantages

 Usually much faster than batch learning.

 Often results in better solutions.

 Can be used for tracking changes.

• Middle ground: Minibatches

39
B. Leibe
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Minibatches

• Idea

 Process only a small batch of training examples together

 Start with a small batch size & increase it as training proceeds.

• Advantages

 Gradients will be more stable than for stochastic gradient descent, 

but still faster to compute than with batch learning.

 Take advantage of redundancies in the training set.

 Matrix operations are more efficient than vector operations.

• Caveat

 Error function should be normalized by the minibatch size, 

s.t. we can keep the same learning rate between minibatches

40
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Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the inverse of 

the Hessian

 What happens if we exceed this learning rate?

42
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Choosing the Right Learning Rate

• Behavior for different learning rates

43
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

44
B. Leibe Image source: Goodfellow & Bengio book
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Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour 

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

46
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

47
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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The Momentum Method

• Idea

 Instead of using the gradient to change the position of the weight 

“particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high 

curvature by combining gradients with 

opposite signs.

 Build up speed in directions with a 

gentle but consistent gradient.

48
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton
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The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject to a 

decay by ® < 1.

 Set the weight change to the current velocity

49
B. LeibeSlide credit: Geoff Hinton
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The Momentum Method: Behavior

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are stuck 

in a ravine, the momentum can be smoothly raised to its final value 

(e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum.

50
B. LeibeSlide credit: Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

51
B. LeibeSlide adapted from Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights 

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically)
52
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Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for different 

weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign of the 

gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)). 

53
B. LeibeSlide adapted from Geoff Hinton
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Other Optimizers

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

54
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Behavior in a Long Valley

55
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Behavior around a Saddle Point

56
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Visualization of Convergence Behavior

57
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn
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Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
58

B. Leibe Image source: Yoshua Bengio
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
59
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Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the early 

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of 

nonlinearities, choice of learning rate, choice of optimizer,…

 In the following, we will take a look at the most important factors 

(to be continued in the next lecture…)

60
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 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 61
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Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most 

unfamiliar to the system. 

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been learned 

by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches, 

make use of shuffling.
62
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Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

63
B. Leibe Image source: Lucas Beyer
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Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
64
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Augmented training data

(from one original image)

Image source: Lucas Beyer
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Practical Advice

65
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Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive, all of 

the updates of weights that feed into a node will be of the same sign. 

 Weights can only all increase or decrease together.

 Slow convergence

66
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Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

67
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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References and Further Reading

• More information on many practical tricks can be found in 

Chapter 1 of the book
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G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.
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