Recap: Decision Tree Training

• **Goal**
 - Select the query (=split) that decreases impurity the most
 \[
 \Delta t(s_j) = i(s_j) - P_L i(s_{jL}) - (1 - P_L) i(s_{jR})
 \]

• **Impurity measures**

 - **Entropy impurity (information gain):**
 \[
 i(s_j) = - \sum_k p(c_k | s_j) \log_2 p(c_k | s_j)
 \]

 - **Gini impurity:**
 \[
 i(s_j) = \sum_k p(c_k | s_j) p(c_k | s_j) = \frac{1}{2} \left[1 - \sum_k p^2(c_k | s_j) \right]
 \]

Recap: Randomized Decision Trees

• **Decision trees: main effort on finding good split**
 - Training runtime: \(O(DN^2 \log N) \)
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large \(D \)).

• **Idea: randomize attribute selection**
 - No longer look for globally optimal split.
 - Instead randomly use subset of \(K \) attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):
 \[
 \Delta E = \sum_{k=1}^K \frac{S_k}{N} \sum_{j=1}^N p_j \log_2(p_j)
 \]
Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.
 - Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
- Main secret
 - Injecting the "right kind of randomness".

Random Forests – Algorithmic Goals

- Create many trees (50 – 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - i.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - i.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).

Random Forests – Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% "out-of-bag" (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

Random Forests – Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(K \) attributes on which the split is based (typically \(K = \sqrt{N} \)).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
 - Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Bet You’re Asking…

How can this possibly ever work???
Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- Properties
 - Very simple algorithm.
 - Resistant to overfitting – generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

Today's Topic

Deep Learning
Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
- And a cool learning algorithm: “Perceptron Learning”
- Hardware implementation “Mark I Perceptron” for 20×20 pixel image analysis

1969 Minsky & Papert
- Showed that (single-layer) Perceptrons cannot solve all problems.
- This was misunderstood by many that they were worthless.

1980s Resurgence of Neural Networks
- Some notable successes with multi-layer perceptrons.
- Backpropagation learning algorithm
- But they are hard to train, tend to overfit, and have unintuitive parameters.
- So, the excitement fades again…

1995+ Interest shifts to other learning methods
- Notably Support Vector Machines
- Machine Learning becomes a discipline of its own.
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks
1995+ Interest shifts to other learning methods
 - Notably Support Vector Machines
 - Machine Learning becomes a discipline of its own.
 - The general public and the press still love Neural Networks.

I'm doing Machine Learning.
So, you're using Neural Networks?
Actually...

Come on. Get real!
Are you using Neural Networks?

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks
1995+ Interest shifts to other learning methods
2005+ Gradual progress
 - Better understanding how to successfully train deep networks
 - Availability of large datasets and powerful GPUs
 - Still largely under the radar for many disciplines applying ML

Perceptrons (Rosenblatt 1957)

- Standard Perceptron
 - Output layer
 - Weights
 - Input layer
 - Hand-designed features based on common sense
- Outputs
 - Linear outputs
 \[y(x) = w^T x + w_0 \]
 - Logistic outputs
 \[y(x) = \sigma(w^T x + w_0) \]
- Learning = Determining the weights \(w \)

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Extension: Multi-Class Networks

- One output node per class
 - Output layer
 - Weights
 - Input layer
- Outputs
 - Linear outputs
 \[y_k(x) = \sum_{i=0}^{d} W_{ki} x_i \]
 - Logistic outputs
 \[y_k(x) = \sigma \left(\sum_{i=0}^{d} W_{ki} x_i \right) \]

⇒ Can be used to do multidimensional linear regression or multiclass classification.
Extension: Non-Linear Basis Functions

- Straightforward generalization
 \[y_k(x) = \sum_{i=0}^{d} W_{ki} \phi_i(x) \]
 \[y_k(x) = \sigma \left(\sum_{i=0}^{d} W_{ki} \phi_i(x) \right) \]
 Output layer
 Weights
 Feature layer
 Mapping (fixed)
 Input layer

- Outputs
 - Linear outputs
 - Logistic outputs
 \[y_k(x) = \sum_{i=0}^{d} W_{ki} \phi_i(x) \]
 \[y_k(x) = \sigma \left(\sum_{i=0}^{d} W_{ki} \phi_i(x) \right) \]

Remarks
- Perceptrons are generalized linear discriminants!
- Everything we know about the latter can also be applied here.
- Note: feature functions \(\phi(x) \) are kept fixed, not learned!

Perceptron Learning

- Very simple algorithm
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- This is guaranteed to converge to a correct solution if such a solution exists.

Loss Functions

- We can now also apply other loss functions
 - L2 loss
 \[L(t, y(x)) = \sum_n (y(x_n) - t_n)^2 \] \(\Rightarrow \) Least-squares regression
 - L1 loss:
 \[L(t, y(x)) = \sum_n |y(x_n) - t_n| \] \(\Rightarrow \) Median regression
 - Cross-entropy loss
 \[L(t, y(x)) = -\sum_n \left(t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \right) \] \(\Rightarrow \) Logistic regression
 - Hinge loss
 \[L(t, y(x)) = \sum_n \left[1 - t_n y_n \right]_+ \] \(\Rightarrow \) SVM classification
 - Softmax loss
 \[L(t, y(x)) = -\sum_n \sum_k \left((t_n = k) \ln y_k(x_n) \right) \] \(\Rightarrow \) Multi-class probabilistic classification
Regularization

- In addition, we can apply regularizers
 - E.g., an L2 regularizer
 \[E(w) = \sum L(t_n, y(x_n; w)) + \lambda ||w||^2 \]
 - This is known as weight decay in Neural Networks.
 - We can also apply other regularizers, e.g. L1 \(\rightarrow\) sparsity
 - Since Neural Networks often have many parameters, regularization becomes very important in practice.
 - We will see more complex regularization techniques later on...

Limitations of Perceptrons

- What makes the task difficult?
 - Perceptrons with fixed, hand-coded input features can model any separable function perfectly...
 - ...given the right input features.
 - For some tasks this requires an exponential number of input features.
 - E.g., by enumerating all possible binary input vectors as separate feature units (similar to a look-up table).
 - But this approach won’t generalize to unseen test cases!
 - It is the feature design that solves the task!
 - Once the hand-coded features have been determined, there are very strong limitations on what a perceptron can learn.
 - Classic example: XOR function.

Wait...

- Didn’t we just say that...
 - Perceptrons correspond to generalized linear discriminants
 - And Perceptrons are very limited...
 - Doesn’t this mean that what we have been doing so far in this lecture has the same problems???
 - Yes, this is the case.
 - A linear classifier cannot solve certain problems (e.g., XOR).
 - However, with a non-linear classifier based on the right kind of features, the problem becomes solvable.
 - So far, we have solved such problems by hand-designing good features \(\phi\) and kernels \(\phi'\).
 - Can we also learn such feature representations?

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Multi-Layer Perceptrons

- Adding more layers
 - Output
 \[y_L(x) = g^{(2)} \left(\sum_{i=1}^{h} W^{(2)}_{k_i} g^{(1)} \left(\sum_{j=0}^{d} W^{(1)}_{j} x_j \right) \right) \]
 - Activation functions \(g^{(1)}\):
 - For example: \(g^{(1)}(a) = \sigma(a), g^{(2)}(a) = a\)
 - The hidden layer can have an arbitrary number of nodes
 - There can also be multiple hidden layers.
 - Universal approximators
 - A 2-layer network (1 hidden layer) can approximate any continuous function of a compact domain arbitrarily well!
 (assuming sufficient hidden nodes)
Learning with Hidden Units

- Networks without hidden units are very limited in what they can learn
 - More layers of linear units do not help \(\Rightarrow \) still linear
 - Fixed output non-linearities are not enough.
- We need multiple layers of adaptive non-linear hidden units. But how can we train such nets?
 - Need an efficient way of adapting all weights, not just the last layer.
 - Learning the weights to the hidden units – learning features
 - This is difficult, because nobody tells us what the hidden units should do.

 \(\Rightarrow \) Main challenge in deep learning.

Gradient Descent

- Two main steps
 1. Computing the gradients for each weight \(\text{today} \)
 2. Adjusting the weights in the direction of the gradient \(\text{next lecture} \)

Obtaining the Gradients

- Approach 1: Naive Analytical Differentiation
 - Compute the gradients for each variable analytically.
 - What is the problem when doing this?

Excursion: Chain Rule of Differentiation

- One-dimensional case: Scalar functions
 \[
 \Delta z = \frac{dz}{dz} \Delta y = \frac{dy}{dy} \Delta x = \frac{dx}{dx} \Delta z
 \]
Excurision: Chain Rule of Differentiation

- Multi-dimensional case: Total derivative

\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} + \ldots
\]

\[
= \sum_{i=1}^{k} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
\]

⇒ Need to sum over all paths that lead to the target variable \(x \).

Obtaining the Gradients

- Approach 1: Naive Analytical Differentiation

\[
y_1(x), y_2(x), y_k(x)
\]

\[
W_{i}^{(1)}, \ldots, W_{i}^{(l)}
\]

\[
z_0 = 1, \ldots, z_{l}, x_{l}
\]

⇒ Compute the gradients for each variable analytically.

⇒ What is the problem when doing this?

⇒ With increasing depth, there will be exponentially many paths!

⇒ Infeasible to compute this way.

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

- Approach 2: Numerical Differentiation

\[
y_1(x), y_2(x), y_k(x)
\]

\[
W_{i}^{(1)}, \ldots, W_{i}^{(l)}
\]

\[
z_0 = 1, \ldots, z_{l}, x_{l}
\]

⇒ Given the current state \(W^{(l)} \), we can evaluate \(E(W^{(l)}) \).

⇒ Idea: Make small changes to \(W^{(l)} \) and accept those that improve \(E(W^{(l)}) \).

⇒ Horribly inefficient! Need several forward passes for each weight. Each forward pass is one run over the entire dataset!

Obtaining the Gradients

- Approach 3: Incremental Analytical Differentiation

\[
y_1(x), y_2(x), y_k(x)
\]

\[
W_{i}^{(1)}, \ldots, W_{i}^{(l)}
\]

\[
z_0 = 1, \ldots, z_{l}, x_{l}
\]

⇒ Idea: Compute the gradients layer by layer.

⇒ Each layer below builds upon the results of the layer above.

⇒ The gradient is propagated backwards through the layers.

⇒ Backpropagation algorithm
Backpropagation Algorithm

Core steps

1. **Forward Pass**

 \[E = \frac{1}{2} \sum_{j \in \text{output}} (t_j - y_j)^2 \]

 \[\frac{\partial E}{\partial y_j} = -(t_j - y_j) \]

2. **Compute error derivatives in each hidden layer from error derivatives in the layer above.**

3. **Use error derivatives w.r.t. activities to get error derivatives w.r.t. the incoming weights.**

Efficient propagation scheme

- Propagate back the gradient from layer \(k \) and multiply with \(y^{(k-1)} \).

Summary: MLP Backpropagation

- **Forward Pass**

 \[
 \begin{align*}
 y^{(0)} &= x \\
 \text{for } & k = 1, \ldots, l \text{ do} \\
 z^{(k)} &= W^{(k)} y^{(k-1)} \\
 y^{(k)} &= g_k(z^{(k)}) \\
 \text{endfor} \\
 y &= y^{(l)} \\
 E &= L(t, y) + \lambda \Omega(W)
 \end{align*}
 \]

- **Backward Pass**

 \[
 \begin{align*}
 h &\leftarrow \frac{\partial E}{\partial y} = \frac{\partial E}{\partial y_j} L(t, y) + \lambda \frac{\partial \Omega}{\partial h} \\
 \text{for } & k = l, l-1, \ldots, 1 \text{ do} \\
 h &\leftarrow \frac{\partial E}{\partial W^{(k)}} = h \circ g'(y^{(k)}) \\
 &\quad + \lambda \frac{\partial \Omega}{\partial (W^{(k)})} \\
 &\quad \text{endfor} \\
 y &= y^{(l)} \\
 E &= L(t, y) + \lambda \Omega(W)
 \end{align*}
 \]

- **Notes**

 - For efficiency, an entire batch of data \(X \) is processed at once.
 - \(\circ \) denotes the element-wise product
Analysis: Backpropagation

- Backpropagation is the key to make deep NNs tractable
 - However...

- The Backprop algorithm given here is specific to MLPs
 - It does not work with more complex architectures, e.g. skip connections or recurrent networks!
 - Whenever a new connection function induces a different functional form of the chain rule, you have to derive a new Backprop algorithm for it.
 - Tedious...

- Let’s analyze Backprop in more detail
 - This will lead us to a more flexible algorithm formulation
 - Next lecture...

References and Further Reading

- More information on Neural Networks can be found in Chapters 6 and 7 of the Goodfellow & Bengio book