Topics of This Lecture

- Recap: Nonlinear Support Vector Machines
- Ensembles of classifiers
 - Bagging
 - Bayesian Model Averaging
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers

\[
\mathbf{w}^T \mathbf{x} + b = 0
\]

- Formulation as a convex optimization problem

\[
\arg \min_{\mathbf{w}, b} \frac{1}{2} \| \mathbf{w} \|^2
\]

under the constraints

\[
t_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n
\]

based on training data points \(\mathbf{x}_n \) and target values \(t_n \in \{-1, 1\} \)

Recap: Nonlinear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[
\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x})
\]
Recap: The Kernel Trick

- Important observation
 - $\phi(x)$ only appears in the form of dot products $\phi(x)^T\phi(y)$:

 $$y(x) = w^T\phi(x) + b$$

 $$= \sum_{n=1}^{N} a_n t_n \phi(x_n)^T\phi(x) + b$$
 - Define a so-called kernel function $k(x,y) = \phi(x)^T\phi(y)$.
 - Now, in place of the dot product, use the kernel instead:

 $$\text{The kernel function implicitly maps the data to the higher-dimensional space (without having to compute } \phi(x) \text{ explicitly)!}$$

Recap: Nonlinear SVM – Dual Formulation

- SVM Dual: Maximize

 $$L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m)$$

 under the conditions

 $$0 \cdot a_n \cdot C$$

 $$\sum_{n=1}^{N} a_n t_n = 0$$

- Classify new data points using

 $$y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b$$

Recap: SVM Loss Function

- Traditional soft-margin formulation

 $$\min_{w \in \mathbb{R}^D, \xi \in \mathbb{R}^+} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n$$

 “Maximize the margin”

 subject to the constraints

 $$t_n y(x_n) \geq 1 - \xi_n$$

 “Most points should be on the correct side of the margin”

- Different way of looking at it

 We can reformulate the constraints into the objective function.

 $$\min_{w \in \mathbb{R}^D, \xi \in \mathbb{R}^+} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} [1 - t_n y(x_n)]_+$$

 L2 regularizer “Hinge loss”

 where $[x]_+ := \max(0,x)$.

Recap: Hinge Loss Analysis

- “Hinge error” used in SVMs

 - Zero error for points outside the margin ($z_n > 1$) ⇒ sparsity

 - Linear penalty for misclassified points ($z_n < 1$) ⇒ robustness

 - Not differentiable around $z_n = 1$ ⇒ Cannot be optimized directly.

So Far…

- We’ve seen already a variety of different classifiers

 - k-NN

 - Bayes classifiers

 - Linear discriminants

 - SVMs

- Each of them has their strengths and weaknesses…

 - Can we improve performance by combining them?
Ensembles of Classifiers

- **Intuition**
 - Assume we have K classifiers.
 - They are independent (i.e., their errors are uncorrelated).
 - Each of them has an error probability $p < 0.5$ on training data.
 - Why can we assume that p won’t be larger than 0.5?
 - Then a simple majority vote of all classifiers should have a lower error than each individual classifier…

- **Constructing Ensembles**
 - **Bagging** = “Bootstrap aggregation” (Breiman 1996)
 - In each run of the training algorithm, randomly select M samples with replacement from the full set of N training data points.
 - If $M = N$, then on average, 63.2% of the training points will be represented. The rest are duplicates.
 - **Injecting randomness**
 - Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM).
 - Perform multiple runs of the learning algorithm with different random initializations.

- **Bayesian Model Averaging**
 - **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 $$ p(X) = \sum_{h=1}^{H} p(X|h)p(h) $$
 - **Interpretation**
 - Just one model is responsible for generating the entire data set.
 - The probability distribution over h just reflects our uncertainty which model that is.
 - As the size of the data set increases, this uncertainty reduces, and $p(X|h)$ becomes focused on just one of the models.

- **Model Averaging: Expected Error**
 - Combine M predictors $y_m(x)$ for target output $h(x)$.
 - E.g. each trained on a different bootstrap data set by bagging.
 - The committee prediction is given by
 $$ y_{COM}(x) = \frac{1}{M} \sum_{m=1}^{M} y_m(x) $$
 - The output can be written as the true value plus some error.
 $$ y(x) = h(x) + \epsilon(x) $$
 - Thus, the expected sum-of-squares error takes the form
 $$ E_x = \left(\sum_{m=1}^{M} (y_m(x) - h(x))^2 \right) = E_x \left[\epsilon_m(x)^2 \right] $$
Model Averaging: Expected Error

- Average error of individual models
 \[\mathbb{E}_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{x} [\epsilon_m(x)^2] \]

- Average error of committee
 \[\mathbb{E}_{COM} = \mathbb{E}_{x} \left[\frac{1}{M} \sum_{m=1}^{M} [y_m(x) - h(x)] \right] = \mathbb{E}_{x} \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(x) \right] \]

- Assumptions
 - Errors have zero mean: \(\mathbb{E}_{x} [\epsilon_m(x)] = 0 \)
 - Errors are uncorrelated: \(\mathbb{E}_{x} [\epsilon_m(x) \epsilon_j(x)] = 0 \)

- Then:
 \[\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV} \]

AdaBoost – “Adaptive Boosting”

- Main idea
 - Iteratively select an ensemble of component classifiers
 - After each iteration, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- Components
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x) \): “strong” or final classifier

- AdaBoost:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) \]
AdaBoost – Formalization

- 2-class classification problem
 - Given: training set $X = \{x_1, ..., x_N\}$ with target values $T = \{t_1, ..., t_N\}, t_n \in \{-1, 1\}$.
 - Associated weights $W = \{w_1, ..., w_N\}$ for each training point.
- Basic steps
 - In each iteration, AdaBoost trains a new weak classifier $h_m(x)$ based on the current weighting coefficients $W(m)$.
 - We then adapt the weighting coefficients for each point
 - Increase w_n if x_n was misclassified by $h_m(x)$.
 - Decrease w_n if x_n was classified correctly by $h_m(x)$.
 - Make predictions using the final combined model

$$H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)$$

AdaBoost – Algorithm

1. Initialization: Set $w(1)^n = \frac{1}{N}$ for $n = 1, ..., N$.
2. For $m = 1, ..., M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W(m)$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w(n)^m I(h_m(x) \neq t_n)$$

$\{ I : 1, \text{ if } A \text{ is true} \}
\{ 0, \text{ otherwise} \}$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \sum_{n=1}^{N} w(n)^m I(h_m(x) \neq t_n)$$

$$\sum_{n=1}^{N} w(n)^m$$

c) Calculate a weighting coefficient for $h_m(x)$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w(n)^{m+1} = ?$$

AdaBoost – Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is not the same as margin for SVM.
 - A bit like retrotitling the theory...
 - However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, and Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
 - Explains why boosting works well.
 - Improvements possible by altering the error function.

AdaBoost – Minimizing Exponential Error

- Sequential Minimization
 - Suppose that the base classifiers $h_1(x), ..., h_m(x)$ and their coefficients $\alpha_1, ..., \alpha_m$ are fixed.
 - Only minimize with respect to α_m and $h_m(x)$.

$$E = \sum_{n=1}^{N} \exp \{-t_n f_m(x_n)\} \quad \text{with} \quad f_m(x) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x)$$

$$= \sum_{n=1}^{N} \exp \left\{ -t_n \sum_{l=1}^{m} \alpha_l h_l(x) \right\}$$

$$= \sum_{n=1}^{N} \exp \left\{ -t_n \alpha_m h_m(x_n) \right\}$$

$$= \sum_{n=1}^{N} w(n)^m \exp \left\{ -\frac{1}{2} \alpha_m h_m(x_n) \right\}$$

AdaBoost – Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w(n)^m \exp \left\{ -\frac{1}{2} \alpha_m h_m(x_n) \right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(x_n) = +1 \Rightarrow \text{collect in } T_m$
 - Misclassified points: $t_n h_m(x_n) = -1 \Rightarrow \text{collect in } F_m$
- Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in T_m} w(n)^m + e^{\alpha_m/2} \sum_{n \in F_m} w(n)^m$$

$$= \left(e^{\alpha_m/2} \right)^N$$

$$\sum_{n=1}^{N} w(n)^m I(h_m(x_n) \neq t_n)$$
AdaBoost – Minimizing Exponential Error

$$E = \frac{1}{2} \sum_{n=1}^{N} w^{(m)}_n \exp \left\{ -\frac{1}{2} \alpha_m h_m(x_n) \right\}$$

- Observation:
 - Correctly classified points: $t_h_m(x_n) = +1 \Rightarrow$ collect in T_m
 - Misclassified points: $t_h_m(x_n) = -1 \Rightarrow$ collect in F_m
- Rewrite the error function as
 $$E = \sum_{n \in F_m} w_n^{(m)} + \sum_{n \in T_m} e^{-\alpha_m/2} w_n^{(m)}$$

$$= \sum_{n \in F_m} e^{-\alpha_m} w_n^{(m)} + \sum_{n \in T_m} e^{-\alpha_m/2} w_n^{(m)}$$

$$\Rightarrow$$ Update for the α coefficients:

$$\alpha_m = \ln \left\{ \frac{1 - e_m}{e_m} \right\}$$

AdaBoost – Final Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.
2. For $m = 1, \ldots, M$ iterations:
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function J_m:

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)$$

b) Estimate the weighted error of this classifier on X:

$$e_m = \frac{1}{\sum_{n=1}^{N} w_n^{(m)}} \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n)$$

c) Calculate a weighting coefficient for $h_m(x)$:

$$\alpha_m = \ln \left\{ \frac{1 - e_m}{e_m} \right\}$$

d) Update the weighting coefficients:

$$w_{n}^{(m+1)} = w_{n}^{(m)} \exp \{ \alpha_m I(h_m(x_n) \neq t_n) \}$$

AdaBoost – Analysis

- Result of this derivation:
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost’s behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.
Recap: Error Functions

\[t_n \in \{-1, 1\} \]

\[E(z_n) \]

\[z_n = t_n y(x_n) \]

- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Squared error used in Least-Squares Classification

- Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- Penalizes "too correct" data points
 - Generally does not lead to good classifiers.

"Hinge error" used in SVMs

- Zero error for points outside the margin (\(z_n > 1 \)) ⇒ sparsity
- Linear penalty for misclassified points (\(z_n < 1 \)) ⇒ robustness
- Not differentiable around \(z_n = 1 \) ⇒ Cannot be optimized directly.

Exponential error used in AdaBoost

- No penalty for too correct data points, fast convergence.
- Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!
- Similar to exponential error for \(z > 0 \).
- Only grows linearly with large negative values of \(z \).
 - Make AdaBoost more robust by switching to this error function.
 - "GentleBoost"

"Cross-entropy error" used in Logistic Regression
Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper: