Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to \(y(x) = \text{const.} \iff w^T x + w_0 = \text{const.} \)
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret \(y(x) \) as posterior probabilities.

Recap: Extension to Nonlinear Basis Fcts.

- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0} \]
- Advantages
 - Transformation allows non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvantage
 - The error function can in general no longer be minimized in closed form.
 \(\Rightarrow \) Minimization with Gradient Descent

Recap: Basis Functions

- Generally, we consider models of the following form
 \[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = w^T \phi(x) \]
 - where \(\phi_j(x) \) are known as basis functions.
 - In the simplest case, we use linear basis functions: \(\phi_j(x) = x \).
- Other popular basis functions
 - Polynomial
 - Gaussian
 - Sigmoid

Recap: Iterative Methods for Estimation

- Gradient Descent (1st order)
 \[w^{(r+1)} = w^{(r)} - \eta \nabla E(w) \big|_{w^{(r)}} \]
 - Simple and general
 - Relatively slow to converge, has problems with some functions
- Newton-Raphson (2nd order)
 \[w^{(r+1)} = w^{(r)} - \eta H^{-1} \nabla E(w) \big|_{w^{(r)}} \]
 where \(H = \nabla^2 E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.
 - Local quadratic approximation to the target function
 - Faster convergence
Recap: Gradient Descent

- Iterative minimization
 - Start with an initial guess for the parameter values \(w_k^{(0)} \).
 - Move towards a (local) minimum by following the gradient.
- Basic strategies
 - "Batch learning"
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}(w^{(r)})} \]
 - "Sequential updating"
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}(w^{(r)})} \]
 where
 \[E(w) = \sum_{n=1}^{N} E_n(w) \]

Example: Quadratic error function

- Sequential updating leads to delta rule (LMS rule)
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]
 \[= w_{kj}^{(r)} - \eta \delta_{kn} \phi_j(x_n) \]

where
\[\delta_{kn} = y_k(x_n; w) - t_{kn} \]

\[\Rightarrow \text{Simply feed back the input data point, weighted by the classification error.} \]

Recap: Gradient Descent

- Cases with differentiable, non-linear activation function
 \[y_k(x) = g(ak) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right) \]
- Gradient descent (again with quadratic error function)
 \[\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(ak)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \delta_{kn} \phi_j(x_n) \]
 \[\delta_{kn} = \frac{\partial g(ak)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \]

Recap: Probabilistic Discriminative Models

- Consider models of the form
 \[p(C_1|\phi) = \frac{1}{1 + \exp(-\beta \phi)} = 1 - p(C_2|\phi) \]

- This model is called logistic regression.

- Properties
 - Probabilistic interpretation
 - But discriminative method: only focus on decision hyperplane
 - Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling \(p(C_1|C_2) \) and \(p(C_2|C_1) \).

Recap: Logistic Regression

- Let’s consider a data set \(\{ \phi_n, t_n \} \) with \(n = 1, \ldots, N \),
 where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0, 1\} \), \(t = (t_1, \ldots, t_N)^T \).
- With \(y_n = p(C_1|\phi_n) \), we can write the likelihood as
 \[p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n} \]
- Define the error function as the negative log-likelihood
 \[E(w) = -\ln p(t|w) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right) \]
- This is the so-called cross-entropy error function.

Gradient of the Error Function

- Error function
 \[E(w) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right) \]
- Gradient
 \[\nabla E(w) = -\sum_{n=1}^{N} \left(t_n \frac{\phi_n}{y_n} + (1 - t_n) \frac{\phi_n}{1 - y_n} \right) \]
 \[= -\sum_{n=1}^{N} \left(t_n \frac{\phi_n}{y_n} \right) \]
 \[= -\sum_{n=1}^{N} \left((t_n - 1) y_n + (1 - t_n) \phi_n \right) \]
 \[= \sum_{n=1}^{N} \left(y_n - t_n \right) \phi_n \]
Gradient of the Error Function

- Gradient for logistic regression
 \[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n \]
- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta (y_k(X_n; w) - t_{kn}) \phi_j(X_n) \]
- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

Newton-Raphson for Logistic Regression

- Now, let's try Newton-Raphson on the cross-entropy error function:
 \[E(w) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \right) \]
 \[\nabla E(w) = \sum_{n=1}^{N} \left(y_n - t_n \right) \phi_n = \Phi^T (y - t) \]
 \[H = \nabla \nabla E(w) = \sum_{n=1}^{N} \left(y_n (1 - y_n) \right) \phi_n^T = \Phi^T R \Phi \]
 where \(R \) is an \(N \times N \) diagonal matrix with \(R_{nn} = y_n(1 - y_n) \).
 \(\Rightarrow \) The Hessian is no longer constant, but depends on \(w \) through the weighting matrix \(R \).

Iteratively Reweighted Least Squares

- Update equations
 \[w^{(r+1)} = w^{(r)} - \left(\Phi^T R \Phi \right)^{-1} \left(\Phi^T R w^{(r)} - \Phi^T (y - t) \right) \]
 \[= \left(\Phi^T R \Phi \right)^{-1} \Phi^T R z \]
 with \(z = \Phi w^{(r)} - R^{-1} (y - t) \)
- Again very similar form (normal equations)
 - But now with non-constant weighting matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \(\Rightarrow \) Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\theta | C_n) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error
- Linear Support Vector Machines
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
Softmax Regression

- **Multi-class generalization of logistic regression**
 - In logistic regression, we assumed binary labels $t_n \in \{0, 1\}$.
 - Softmax generalizes this to K values in 1-of-K notation.

$$\begin{align*}
y(x; w) &= \begin{pmatrix} P(y = 1|x, w) \\ P(y = 2|x, w) \\ \vdots \\ P(y = K|x, w) \end{pmatrix} = \frac{1}{\sum_{k=1}^{K} \exp(w_k^T x)} \begin{pmatrix} \exp(w_1^T x) \\ \exp(w_2^T x) \\ \vdots \\ \exp(w_K^T x) \end{pmatrix}
\end{align*}$$

- This uses the **softmax function**
 $$\exp(a_k) = \sum_j \exp(a_j)$$

- Note: the resulting distribution is normalized.

Softmax Regression Cost Function

- **Logistic regression**
 - Alternative way of writing the cost function with indicator function $I()$

$$E(w) = - \sum_{n=1}^{N} \{t_n \ln(y_n) + (1 - t_n) \ln(1 - y_n)\}$$

Optimization

- Again, no closed-form solution is available
 - Resort again to **Gradient Descent**
 - Gradient

$$\nabla_w E(w) = - \sum_{n=1}^{N} \left[(t_n = k) \ln P(y_n = k|x_n; w) \right]$$

- Note
 - $\nabla_w E(w)$ is itself a vector of partial derivatives for the different components of w_c.
 - We can now plug this into a standard optimization package.

Note on Error Functions

- **Ideal misclassification error function** (black)
 - This is what we want to approximate (error = #misclassifications)
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Topics of This Lecture

- **Softmax Regression**
 - Multi-class generalization
 - Gradient descent solution

- **Note on Error Functions**
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

- **Linear Support Vector Machines**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

Note on Error Functions

- **Squared error used in Least-Squares Classification**
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - Generally does not lead to good classifiers.
Comparing Error Functions (Loss Functions)

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

Overview: Error Functions

- Ideal Misclassification Error
 - This is what we would like to optimize.
 - But cannot compute gradients here.
- Quadratic Error
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.
- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

Looking at the error function this way gives us an analysis tool to compare the properties of classification approaches.

Let’s Put This To Practice…

- Squared error on sigmoid/tanh output function
 - Avoids penalizing “too correct” data points.
 - But: zero gradient for confidently incorrect classifications!
 - Do not use L2 loss with sigmoid outputs (instead: cross-entropy)!

Topics of This Lecture

- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-Entropy error
- Linear Support Vector Machines
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

Example: Linearly Separable Data

- Overfitting is often a problem with linearly separable data
 - Which of the many possible decision boundaries is correct?
 - All of them have zero error on the training set…
 - However, they will most likely result in different predictions on novel test data.
 - Different generalization performance
- How to select the classifier with the best generalization performance?

Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 - Overfitting to the training set!
Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
 - Intuitively, we would like to select the classifier which leaves maximal "safety room" for future data points.
 - This can be obtained by maximizing the margin between positive and negative data points.
 - It can be shown that the larger the margin, the lower the corresponding classifier’s VC dimension (capacity for overfitting).
- The SVM takes up this idea
 - It searches for the classifier with maximum margin.
 - Formulation as a convex optimization problem → Possible to find the globally optimal solution!

Support Vector Machine (SVM)

- Let's first consider linearly separable data
 - \(X \) training data points \(\{(x_i, y_i)\}_{i=1}^N \) \(x_i \in \mathbb{R}^d \)
 - Target values \(t_i \in \{-1, 1\} \)
 - Hyperplane separating the data

\[w^T x + b = 0 \]

- Margin of the hyperplane:
 - \(d_+ \): distance to nearest pos. training example
 - \(d_- \): distance to nearest neg. training example
- We can always choose \(w, b \) such that \(d_+ = d_- = \frac{1}{\|w\|} \)

Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with
 - \(w^T x_i + b \geq +1 \) for \(t_i = +1 \)
 - \(w^T x_i + b \leq -1 \) for \(t_i = -1 \)

- Combined in one equation, this can be written as
 \[t_i(w^T x_i + b) \geq 1 \quad \forall n \]

\[t_n(w^T x_n + b) = 1 \]

- By definition, there will always be at least one such point.

Support Vector Machine (SVM)

- We can choose \(w \) such that
 - \(w^T x_i + b = +1 \) for one \(t_i = +1 \)
 - \(w^T x_i + b = -1 \) for one \(t_i = -1 \)

- The distance between those two hyperplanes is then the margin
 \[d_- = d_+ = \frac{1}{\|w\|} \]
 \[d_- + d_+ = \frac{2}{\|w\|} \]

\(\Rightarrow \) We can find the hyperplane with maximal margin by minimizing \(\|w\|^2 \)

Support Vector Machine (SVM)

- Optimization problem
 - Find the hyperplane satisfying
 \[\arg \min_{w,b} \frac{1}{2}\|w\|^2 \]
 under the constraints
 \[t_n(w^T x_n + b) \geq 1 \quad \forall n \]

 - Quadratic programming problem with linear constraints.
 - Can be formulated using Lagrange multipliers.

- Who is already familiar with Lagrange multipliers?
 - Let's look at a real-life example…
Recap: Lagrange Multipliers

Problem
- We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
- Example: we want to get as close as possible, but there is a fence.
- How should we move?
 - $f(x) = 0$ (subject to constraints)
 - $f(x) > 0$ (subject to constraints)
- We want to maximize ∇f.
- But we can only move parallel to the fence, i.e., along $\nabla K = \nabla f + \lambda \nabla f$ with $\lambda = 0$.

Solution lies inside $+\$

Solution lies on boundary k

Example: There might be a hill from 1.

Introduction positive Lagrange multipliers: $K(x)$

In both cases

Example: we want to get as close as $b = 0$.

Lagrangian Formulation

Two cases

- Solution lies on boundary
 - $f(x) = 0$ for some $\lambda > 0$
 - Solution lies inside $f(x) > 0$
 - Constraint inactive: $\lambda = 0$
 - In both cases
 - $\lambda f(x) = 0$

SVM – Lagrangian Formulation

Find hyperplane minimizing $\|w\|^2$ under the constraints

$t_n (w^T x_n + b) - 1 \geq 0 \quad \forall n$

Lagrangian formulation

- Introduce positive Lagrange multipliers: $\alpha_n \geq 0 \quad \forall n$
- Minimize Lagrangian ("primal form")

$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \alpha_n \{ t_n (w^T x_n + b) - 1 \}$

- i.e., find w, b, and α such that

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n t_n = 0$$

$$\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{n=1}^{N} \alpha_n t_n x_n$$

Optimize

$$\max_{x,\lambda} L(x, \lambda) = K(x) + \lambda f(x)$$

$$\frac{\partial L}{\partial x} = \nabla K + \lambda \nabla f = 0$$

Karush-Kuhn-Tucker (KKT) conditions:

$$\lambda \geq 0$$

$$f(x) \geq 0$$

$$\lambda f(x) = 0$$

The solution of L_p needs to fulfill the KKT conditions

- Necessary and sufficient conditions

$$\alpha_n \geq 0$$

$$t_n y(x_n) - 1 \geq 0$$

$$f(x) \geq 0$$

$$\lambda f(x) = 0$$
SVM – Solution (Part 1)

- **Solution for the hyperplane**
 - Computed as a linear combination of the training examples
 \[
 w = \sum_{n=1}^{N} \alpha_n t_n x_n
 \]
 - Because of the KKT conditions, the following must also hold
 \[
 \alpha_n \left(t_n (w^T x_n + b) - 1 \right) = 0 \quad \text{(KKT)}
 \]
 - This implies that \(\alpha_n > 0 \) only for training data points for which
 \[
 (t_n (w^T x_n + b) - 1) = 0
 \]
 - \(\Rightarrow \) Only some of the data points actually influence the decision boundary!

SVM – Support Vectors

- The training points for which \(\alpha_n > 0 \) are called “support vectors”.
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - \(\Rightarrow \) Robustness to “too correct” points!

SVM – Solution (Part 2)

- **Solution for the hyperplane**
 - To define the decision boundary, we still need to know \(b \).
 - Observation: any support vector \(x_n \) satisfies
 \[
 t_n f(x_n) = t_n \left(\sum_{m \in S} \alpha_m t_m x_n^T x_m + b \right) = 1
 \]
 - Using \(t_n^2 = 1 \) we can derive:
 \[
 b = t_n - \sum_{m \in S} \alpha_m t_m x_n^T x_m
 \]
 - In practice, it is more robust to average over all support vectors:
 \[
 b = \frac{1}{NS} \sum_{n \in S} \left(t_n - \sum_{m \in S} \alpha_m t_m x_n^T x_m \right)
 \]

SVM – Discussion (Part 1)

- **Linear SVM**
 - Linear classifier
 - SVMs have a “guaranteed” generalization capability.
 - Formulation as convex optimization problem.
 - \(\Rightarrow \) Globally optimal solution!
- **Primal form formulation**
 - Solution to quadratic prog. problem in \(M \) variables is in \(\mathcal{O}(M^3) \).
 - Here: \(D \) variables \(\Rightarrow \mathcal{O}(D^3) \)
 - Problem: scaling with high-dim. data (“curse of dimensionality”)

SVM – Dual Formulation

- Improving the scaling behavior: rewrite \(L_p \) in a dual form
 \[
 L_p = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \alpha_n \left\{ t_n (w^T x_n + b) - 1 \right\}
 \]
 \[
 = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \alpha_n t_n w^T x_n - b \sum_{n=1}^{N} \alpha_n t_n + \sum_{n=1}^{N} \alpha_n
 \]
 - Using the constraint \(\sum_{n=1}^{N} \alpha_n t_n = 0 \) we obtain
 \[
 \frac{\partial L_p}{\partial b} = 0
 \]
 - \(L_p = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \alpha_n t_n w^T x_n + \sum_{n=1}^{N} \alpha_n \)

SVM – Dual Formulation

- Using the constraint \(w = \sum_{n=1}^{N} \alpha_n t_n x_n \), we obtain
 \[
 \frac{\partial L_p}{\partial w} = 0
 \]
 \[
 L_p = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m x_n^T x_m + \sum_{n=1}^{N} \alpha_n
 \]
 \[
 = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m t_n t_m (x_n^T x_m) + \sum_{n=1}^{N} \alpha_n
SVM – Dual Formulation

\[L = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) + \sum_{n=1}^{N} a_n \]

> Applying \(\frac{1}{2} \|w\|^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \)

\[\frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

> Inserting this, we get the Wolfe dual

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

SVM – Discussion (Part 2)

- Dual form formulation
 - In going to the dual, we now have a problem in \(N \) variables \((a_n)\).
 - Isn’t this worse?? We penalize large training sets!

- However...
 1. SVMs have sparse solutions: \(a_n \neq 0 \) only for support vectors!
 2. We have avoided the dependency on the dimensionality.

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book.