Machine Learning – Lecture 5
Linear Discriminant Functions
23.10.2019

Recap: Mixture of Gaussians (MoG)
* "Generative model"

\[p(j) = \pi_j \]

"Weight" of mixture component

\[p(x) = \sum_{j=1}^{M} p(x|\mu_j)p(j) \]

Mixture density

Recap: Estimating MoGs – Iterative Strategy
* Assuming we knew the mixture components...

\[f(x) \]

ML for Gaussian #1
\[h(j = 1|x_n) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \]
\[h(j = 2|x_n) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{n=1}^{N} h(j = 1|x_n)} \]

\[\mu_2 = \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{n=1}^{N} h(j = 2|x_n)} \]

Recap: K-Means Clustering
* Iterative procedure
 1. Initialization: pick \(K \) arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

* Algorithm is guaranteed to converge after finite iterations.
 - Local optimum
 - Final result depends on initialization.

Course Outline
* Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
* Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
* Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks
Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n; \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n; \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \ n = 1, \ldots, N
 \]
 - M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \hat{N}_j = \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j
 \]
 \[
 \bar{x}_j^{\text{new}} \leftarrow \frac{1}{N_j} \sum_{n=1}^{N} \gamma_j(x_n) x_n
 \]
 \[
 \bar{\mu}_j^{\text{new}} = \frac{1}{N_j} \sum_{n=1}^{N} \gamma_j(x_n) x_n
 \]
 \[
 \sum_{j=1}^{J} \gamma_j(x_n) (x_n - \mu_j^{\text{new}})^T (x_n - \mu_j^{\text{new}})
 \]

Application: Background Model for Tracking

- Train background MoG for each pixel
 - Model "common" appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.
- Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (=object).
 - Easy segmentation if camera is fixed.

Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify other pixels.
 - Simple segmentation procedure (building block for more complex applications)

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Discriminant Functions

- Bayesian Decision Theory
 - Model conditional probability densities \(p(x|C_k) \) and priors \(p(C_k) \)
 - Compute posteriors \(p(C_k|x) \) (using Bayes’ rule)
 - Minimize probability of misclassification by maximizing \(p(C|x) \)
- New approach
 - Directly encode decision boundary
 - Without explicit modeling of probability densities
 - Minimize misclassification probability directly.
Recap: Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions \(y_1(x), \ldots, y_K(x) \)
 - Classify \(x \) as class \(C_i \) if \(y_i(x) > y_j(x) \) \(\forall j \neq k \)
- Examples (Bayes Decision Theory)
 \[
 y_k(x) = p(C_k|x) \\
 y_k(x) = p(x|C_k)p(C_k) \\
 y_k(x) = \log p(x|C_k) + \log p(C_k)
 \]

Discriminant Functions

- Example: 2 classes
 \[
 y_1(x) > y_2(x) \\
 \Leftrightarrow \ y_1(x) - y_2(x) > 0 \\
 \Leftrightarrow \ y(x) > 0
 \]
- Decision functions (from Bayes Decision Theory)
 \[
 y(x) = p(C_1|x) - p(C_2|x) \\
 y(x) = \ln \frac{p(x|C_1)}{p(x|C_2)} + \ln \frac{p(C_1)}{p(C_2)}
 \]

Learning Discriminant Functions

- General classification problem
 - Goal: take a new input \(x \) and assign it to one of \(K \) classes \(C_k \).
 - Given: training set \(\mathbf{X} = \{x_1, \ldots, x_n\} \)
 - with target values \(\mathbf{T} = \{t_1, \ldots, t_n\} \).
 - \(\Rightarrow \) Learn a discriminant function \(y(x) \) to perform the classification.
- 2-class problem
 - Binary target values: \(t_n \in \{0, 1\} \)
- K-class problem
 - 1-of-K coding scheme, e.g. \(t_n = (0, 1, 0, 0)^T \)

Linear Discriminant Functions

- 2-class problem
 - \(y(x) > 0 \): Decide for class \(C_1 \), else for class \(C_2 \)
 - In the following, we focus on linear discriminant functions
 \[
 y(x) = \mathbf{w}^T \mathbf{x} + w_0
 \]
 - weight vector \(\mathbf{w} \)
 - bias \(w_0 \) (threshold)
 - If a data set can be perfectly classified by a linear discriminant, then we call it **linearly separable**.

Linear Discriminant Functions

- Decision boundary \(y(x) = 0 \) defines a hyperplane
 - Normal vector: \(\mathbf{w} \)
 - Offset: \(-\frac{w_0}{||\mathbf{w}||} \)
 \[
 y(x) = \mathbf{w}^T \mathbf{x} + w_0
 \]
- Notation
 - \(D \): Number of dimensions
 \[
 \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \\
 \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}
 \]
 \[
 y(x) = \mathbf{w}^T \mathbf{x} + w_0
 = \sum_{i=1}^{D} w_ix_i + w_0
 = \sum_{i=0}^{D} w_ix_i \quad \text{with} \quad x_0 = 1 \quad \text{constant}
 \]
Extension to Multiple Classes

- Two simple strategies
 - One-vs-all classifiers
 - One-vs-one classifiers

Resulting decision hyperplanes:

\[
\begin{align*}
\text{Least:} & \quad w_k [x] + w_k0 > 0, \\
\text{Resulting decision hyperplanes:} & \quad (w_k - w_j)^T x + (w_k0 - w_j0) = 0.
\end{align*}
\]

- It can be shown that the decision regions of a linear discriminant are always connected and convex.
 - Convex means if \(x_k \) and \(x_j \) are both in \(R_k \), then any point \(x \) on the connecting line between \(x_k \) and \(x_j \) is also in \(R_k \).
 - This makes linear discriminant models particularly suitable for problems for which the conditional densities \(p(x|y_k) \) are unimodal.

Topics of This Lecture

- General Classification Problem
 - Classification problem
 - Let’s consider \(K \) classes described by linear models
 \[
y_k(x) = w_k^T x + w_k0, \quad k = 1, \ldots, K
 \]
 - We can group those together using vector notation
 \[
y(x) = W^T x
 \]
 - where
 \[
 W = [\hat{w}_1, \ldots, \hat{w}_K] =
 \begin{bmatrix}
 w_{10} & \cdots & w_{K0} \\
 w_{11} & \cdots & w_{K1} \\
 \vdots & \ddots & \vdots \\
 w_{1D} & \cdots & w_{KD}
 \end{bmatrix}
 \]
 - The output will again be in 1-of-K notation.
 - We can directly compare it to the target values \(t \) of \(Y(x) = XW \) and compare this to the target matrix \(T \) where
 \[
 \hat{W} = [\hat{w}_1, \ldots, \hat{w}_K],
 \hat{X} = [\hat{x}_1, \ldots, \hat{x}_N],
 T = \begin{bmatrix} t_1^T \\ \vdots \\ t_N^T \end{bmatrix}
 \]

 - Result of the comparison:
 \[
 \hat{X} W - T
 \]
Simplest approach

- Directly try to minimize the sum-of-squares error
- We could write this as
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2 \]
 \[= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (w^T x_n - t_{kn})^2 \]

- But let’s stick with the matrix notation for now...
- (The result will be simpler to express and we’ll learn some nice matrix algebra rules along the way...)

Deeper reason for the failure

- Least-squares corresponds to Maximum Likelihood under the assumption of a Gaussian conditional distribution.
- However, our binary target vectors have a distribution that is clearly non-Gaussian!
- ⇒ Least-squares is the wrong probabilistic tool in this case!

Connection to neural networks

- Let’s formulate the linear discriminant functions
- \[w = \mathbf{x}^T \]
- \[\mathbf{y} = \mathbf{y}^T \]
- \[\hat{y} = \mathbf{x}^T \]

Least squares is very sensitive to outliers!

- The error function penalizes predictions that are “too correct”.

Problems with Least Squares

- Another example:
 - 3 classes (red, green, blue)
 - Linearly separable problem
 - Least-squares solution:
 - Most green points are misclassified!

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

The error function penalizes predictions that are “too correct”.

- Multi-class case
 - Let’s formulate the sum-of-squares error in matrix notation
 \[E_D(W) = \frac{1}{2} \text{Tr} \left\{ (\mathbf{X}W - T)^T(\mathbf{X}W - T) \right\} \]
 - Taking the derivative yields
 \[\frac{\partial}{\partial W} E_D(W) = \frac{1}{2} \text{Tr} \left\{ (\mathbf{X}W - T)^T(\mathbf{X}W - T) \right\} \]
 \[= \frac{1}{2} \frac{\partial}{\partial W} \text{Tr} \left\{ (\mathbf{X}W - T)^T(\mathbf{X}W - T) \right\} \]
 \[= \mathbf{X}^T(\mathbf{X}W - T) \]

Exact, closed-form solution for the discriminant function parameters.

\[\hat{\mathbf{y}} = \mathbf{X}^T(\mathbf{X} \hat{\mathbf{W}} - T) \]

\[\hat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T} \]

\[\hat{\mathbf{W}} \text{ is the wrong probabilistic tool in this case!} \]
Generalized Linear Models

- Linear model
 \[y(x) = w^T x + w_0 \]
- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to \(y(x) = \text{const.} \iff w^T x + w_0 = \text{const.} \)
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

Logistic Sigmoid Activation Function

\[g(a) \equiv \frac{1}{1 + e^{-a}} \]

Example: Normal distributions with identical covariance

\[p(x | a) \quad p(x | b) \]
\[p(a | x) \quad p(b | x) \]

Normalized Exponential

- General case of \(K > 2 \) classes:
 \[p(C_k | x) = \frac{p(x | C_k)p(C_k)}{\sum_j p(x | C_j)p(C_j)} \]
 \[= \frac{1}{1 + \exp(-a)} \equiv g(a) \]
 \[a_k = \ln \frac{p(x | C_k)p(C_k)}{p(x | C_j)p(C_j)} \]

 - This is known as the normalized exponential or softmax function
 - Can be regarded as a multiclass generalization of the logistic sigmoid.

Relationship to Neural Networks

- 2-Class case
 \[y(x) = g \left(\sum_{i=0}^{D} w_i x_i \right) \quad \text{with} \quad x_0 = 1 \quad \text{constant} \]
- Neural network (“single-layer perceptron”)

\[\text{threshold} \quad w_0 \quad w_1 \quad w_2 \quad \text{weights} \]
\[x_0 = 1 \quad x_1 \quad x_2 \quad \text{inputs} \quad \text{output} \]

- Multi-class case
 \[y_k(x) = g \left(\sum_{i=0}^{D} w_{k,i} x_i \right) \quad \text{with} \quad x_0 = 1 \quad \text{constant} \]
- Multi-class perceptron
Logistic Discrimination

- If we use the logistic sigmoid activation function…
 \[g(a) = \frac{1}{1 + \exp(-a)} \]
 \[y(x) = g(w^T x + w_0) \]

… then we can interpret the \(y(x) \) as posterior probabilities!

Other Motivation for Nonlinearity

- Recall least-squares classification
 - One of the problems was that data points that are "too correct" have a strong influence on the decision surface under a squared-error criterion.
 \[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 \]
 - Reason: the output of \(y(x_n; w) \) can grow arbitrarily large for some \(x_n \):
 \[y(x; w) = w^T x + w_0 \]
 - By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences

Discussion: Generalized Linear Models

- Advantages
 - The nonlinearity gives us more flexibility.
 - Can be used to limit the effect of outliers.
 - Choice of a sigmoid leads to a nice probabilistic interpretation.

- Disadvantage
 - Least-squares minimization in general no longer leads to a closed-form analytical solution.
 ⇒ Need to apply iterative methods.
 ⇒ Gradient descent.

Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

Classical counterexample: XOR

Generalized Linear Discriminants

- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0} \]
 - Purpose of \(\phi_j(x) \): basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.

- Notation
 \[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) \quad \text{with} \quad \phi_0(x) = 1 \]
Gradient Descent
• Learning the weights w:
 - N training data points: $X = \{x_1, \ldots, x_N\}$
 - K outputs of decision functions: $y_k(x; w)$
 - Target vector for each data point: $T = \{t_1, \ldots, t_N\}$

• Error function (least-squares error) of linear model
 $$E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2$$
 $$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$

\[\text{Gradient Descent} \]
\[\text{Basic Strategies} \]
• “Batch learning”
 $$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \frac{\partial E(w)}{\partial w_{kj}}_{w^{(\tau)}}$$
 $$\eta: \text{Learning rate}$$

\[\text{Gradient Descent} \]
• “Sequential updating”
 $$E(w) = \sum_{n=1}^{N} E_n(w)$$
 $$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}}_{w^{(\tau)}}$$
 $$\eta: \text{Learning rate}$$

\[\text{Gradient Descent} \]
• Error function
 $$E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$
 $$E_n(w) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$
 $$\frac{\partial E_n(w)}{\partial w_{kj}} = \sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \phi_j(x_n)$$
 $$= (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$

\[\text{Gradient Descent} \]
• Delta rule (LMS rule)
 $$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$
 $$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(x_n)$$
 where
 $$\delta_{kn} = y_k(x_n; w) - t_{kn}$$

\[\Rightarrow \text{Simply feed back the input data point, weighted by the classification error.} \]
Gradient Descent

- Cases with differentiable, non-linear activation function

\[y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right) \]

- Gradient descent

\[
\begin{align*}
\frac{\partial E_n(w)}{\partial w_{kj}} &= \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \\
w_{kj}^{(s+1)} &= w_{kj}^{(s)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} \\
\delta_{kn} &= \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})
\end{align*}
\]

Summary: Generalized Linear Discriminants

- Properties
 - General class of decision functions.
 - Nonlinearity \(g(\cdot) \) and basis functions \(\phi_j \) allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

- Limitations / Caveats
 - Flexibility of model is limited by curse of dimensionality
 - \(g(\cdot) \) and \(\phi_j \) often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006