Machine Learning — Lecture 1

Introduction

09.10.2019

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/
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Organization

* Lecturer
> Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)

* Assistants
> Al Athar (athar@vision.rwth-aachen.de)
> Sabarinath Mahadevan (mahadevan@vision.rwth-aachen.de)

* Course webpage
> http://www.vision.rwth-aachen.de/courses/
> Slides will be made available on the webpage and in moodle
> Lecture recordings as screencasts will be available via moodle

* Please subscribe to the lecture in rwth online!
> Important to get email announcements and moodle access!
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Language

* Official course language will be English
> If at least one English-speaking student is present.
> If not... you can choose.

* However...

> Please tell me when I'm talking too fast or when | should repeat
something in German for better understanding!

> You may at any time ask questions in German!
> YOou may turn in your exercises in German.
> YOou may answer exam questions in German.
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Organization

> 6 EECS credits

* Place & Time
> Lecture/Exercises:
> Lecture/Exercises:

* Exam
> Written exam
> 1StTry TBD
> 2N Try TBD
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 Structure: 3V (lecture) + 1U (exercises)

> Part of the area “Applied Computer Science”

Wed 08:30 — 10:00
Thu 14:30-16:00

TBD
TBD

B. Leibe

room HG Aula
room TEMP2



RWNTH
Exercises and Supplementary Material

* EXxercises
> Typically 1 exercise sheet every 2 weeks.

> Pen & paper and programming exercises
— Python for first exercise slots
— TensorFlow for Deep Learning part

> Hands-on experience with the algorithms from the lecture.
> Send your solutions the night before the exercise class.

—Plocdto oo e BEO0L cndbhe pointe focn b for dhe oaa ]

* Teams are encouraged!
> You can form teams of up to 4 people for the exercises.
> Each team should only turn in one solution via L2P.
> But list the names of all team members in the submission.
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Date

Course Webpage

Title

Course Schedule

Content

RWTHAACHEN
UNIVERSITY

Material

Thu, 2017-10-12

Mon, 2017-10-16

Thu, 2017-10-19

Mon, 2017-10-23

Introduction

Prob. Density
Estimation |

Prob. Density
Estimation I

Prob. Density

Introduction, Probability Theory, Bayes
Decision Theory, Minimizing Expected Loss

Parametric Methods, Gaussian Distribution,
Maximum Likelihood

Bayesian Learning, Nonparametric Methods,
Histograms, Kernel Density Estimation

Mixture of Gaussians, k-Means Clustering,

Estimation 111 EM-Clustering, EM Algorithm
Thu, 2017-10-26 |Linear Linear Discriminant Functions, Least-squares
Discriminant Classification, Generalized Linear Models
Functions |
Mon, 2017-10-30 |Exercise 1 Matlab Tutorial, Probability Density
Estimation, GMM, EM
Thu, 2017-11-02  |Linear Logistic Regression, Iteratively Reweighted First exercise
Discriminant Least Squares, Softmax Regression, Error
Functions Il Function Analysis on 24 10
Mon, 2017-11-06 |Linear SVMs Linear SVMs, Soft-margin classifiers,

Thu, 2017-11-09

Mon-Linear SYMs

nonlinear basis functions

Soft-margin classifiers, nonlinear basis
functions, Kernel trick, Mercer's condition,
Nonlinear SVMs

http://www.vision.rwth-aachen.de/courses/

B. Leibe
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RWTHAACHEN
UNIVERSITY
Textbooks

* The first half of the lecture is covered in Bishop’s book.
* For Deep Learning, we will use Goodfellow & Bengio.

P Christopher M. Bishop
Pattern Recognition and Machine Learning
= Springer, 2006

(available in the library’s “Handapparat”)

I. Goodfellow, Y. Bengio, A. Courville
Deep Learning
MIT Press, 2016

* Research papers will be given out for some topics.
> Tutorials and deeper introductions.
> Application papers

B. Leibe



How to Find Us

o (Office:
> UMIC Research Centre
> Mies-van-der-Rohe-Strasse 15, room 124

* Office hours
> If you have guestions about the lecture, contact Paul or Sabarinath.

> My regular office hours will be announced
(additional slots are available upon request)

> Send us an email before to confirm a time slot.

Questions are welcome!
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Machine Learning

e Statistical Machine Learning

> Principles, methods, and algorithms for learning and prediction on
the basis of past evidence

* Already everywhere
> Speech recognition (e.g. Siri)
> Machine translation (e.g. Google Translate)
> Computer vision (e.g. Face detection)
> Text filtering (e.g. Email spam filters)
> QOperation systems (e.g. Caching)
> Fraud detection (e.g. Credit cards)
> Game playing (e.g. Alpha Go)
> Robotics (everywhere)
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Slide credit: Bernt Schiele B. Leibe
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Siri. =2
Your wish is
its command.

Automatic Speech Recognition
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10

Slide adapted from Zoubin Gharamani B. Leibe



RWNTH
What Is Machine Learning Useful For?

Computer Vision

(Object Recognition, Segmentation, Scene Understanding)
11
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RWTHAACHEN
. . UNIVERSITY
What Is Machine Learning Useful For?
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Information Retrieval
(Retrieval, Categorization, Clustering, ...
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Slide adapted from Zoubin Gharamani



RWTHAACHEN
. . UNIVERSITY
What Is Machine Learning Useful For?

10-Year US Treasury Note Price (EOD) (8UST) o Stockonaris com
‘$UST Daily 5-0ct-2004 0:112.15 H:112.30 L:112.05 C:112.23 Chg:+0.06

MA(S0) 112.29 4
MA{150) 11, Gﬁ Ly

1150

| 107 5
RSI(14) 450 Price / Momentum
Divergence
-~ = 70
a2 Vi P ==V Ciliaa® Wi
V‘l R f"./ w e
Sell |
Slow STO %K(14) %D(3) 18.30 1923 I
20

a0 i 7\ A
=N 4

ROG(1Z) 045 Price s Momentum Divergence

| T _| 45
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! . -2
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Financial Prediction
(Time series analysis, ...)
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Slide adapted from Zoubin Gharamani B. Leibe



RWTHAACHEN
UNIVERSITY

What Is Machine Learning Useful For?

600

4
¥

Diseases

2
8 e B
é 4000
g
C
S
4
= Medical Diagnosis
L . .
é (Inference from partial observations)
14
Slide adapted from Zoubin Gharamani B. Leibe Image from Kevin Murphy
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Bioinformatics

What Is Machine Learning Useful For?

(Modelling gene microarray data,...)

Slide adapted from Zoubin Gharamani B. Leibe
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RWNTH
What Is Machine Learning Useful For?

Autonomous Driving
(DARPA Grand Challenge,...)
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. 16
Slide adapted from Zoubin Gharamani B. Leibe Image from Kevin Murphy




And you might have heard of...

Deep Learning

Machine Learning Winter ‘19

B. Leibe



Machine Learning

* Goal
> Machines that learn to perform a task from experience

* Why?

> Crucial component of every intelligent/autonomous system
Important for a system’s adaptability
Important for a system’s generalization capabilities
Attempt to understand human learning

Y

Y

Y
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Slide credit: Bernt Schiele B. Leibe



RWNTH
Machine Learning: Core Questions

* Learning to perform atask from experience

* Learning
> Most important part here!
> We do not want to encode the knowledge ourselves.

> The machine should learn the relevant criteria automatically from
past observations and adapt to the given situation.

* Tools
> Statistics
> Probability theory
> Decision theory
> Information theory
> Optimization theory

(@))
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Machine Learning: Core Questions

* Learning to perform atask from experience

* Task
> Can often be expressed through a mathematical function

y=fxw)
> X Input

>y Output
> w: Parameters (this is what is “learned”)

* Classification vs. Regression
> Regression: continuous y
> Classification: discrete y
— E.g. class membership, sometimes also posterior probability

Slide credit: Bernt Schiele B. Leibe

20



RWTHAACHEN
. UNIVERSITY
Example: Regression

 Automatic control of a vehicle

f(x;w)

X X y

Plant and

Controller
Ri(s} + 3 (s)..
Actuating Output

signal
{error)

H(s) &

Feedback
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Slide credit: Bernt Schiele B. Leibe
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Examples: Classif

* Emall filtering

* Character recognition

* Speech recognition

Slide credit: Bernt Schiele

Ication

x e[a-z]" 4 > vy e[important, spam]

e =l RN

B. Leibe
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RWNTH
Machine Learning: Core Problems

° |nput z: = ]
= [ = >y € Val, /el . ful/]
bank 9— l
apple, ....zcbra
* Features

Y

Invariance to irrelevant input variations

Selecting the “right” features is crucial

Encoding and use of “domain knowledge”
Higher-dimensional features are more discriminative.

Y

Y

Y

* Curse of dimensionality
> Complexity increases exponentially with number of dimensions.
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RWTH
Machine Learning: Core Questions

* Learning to perform atask from experience

* Performance measure: Typically one number
> % correctly classified letters
> % games won
> % correctly recognized words, sentences, answers

* Generalization performance

> Training vs. test
> “All” data
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Slide credit: Bernt Schiele B. Leibe



RWTH
Machine Learning: Core Questions

* Learning to perform atask from experience

* Performance: “99% correct classification”
> Of what???
> Characters? Words? Sentences?
> Speaker/writer independent?
> Over what data set?

>

* “The car drives without human intervention 99% of the time
on country roads”
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Slide adapted from Bernt Schiele B. Leibe



Machine Learning: Core Questions

* Learning to perform atask from experience

* What data is available?

> Data with labels: supervised learning
— Images / speech with target labels
— Car sensor data with target steering signal

Y

Data without labels: unsupervised learning
— Automatic clustering of sounds and phonemes
— Automatic clustering of web sites

> Some data with, some without labels: semi-supervised learning

Feedback/rewards: reinforcement learning

Y
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Slide credit: Bernt Schiele B. Leibe



Machine Learning: Core Questions

* Learning to perform atask from experience

* Learning
> Most often learning = optimization
> Search in hypothesis space
> Search for the “best” function / model parameter w

— l.e. maximize y = f(X; W) w.r.t. the performance measure

Performance

l/Learmin g Method\.

Function |¢— 5 |Experience
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Machine Learning: Core Questions

* Learning is optimization of y = f(x; w)

> W. characterizes the family of functions
> W. Indexes the space of hypotheses
> W. vector, connection matrix, graph, ...

3Cing

/\‘\.

Y>3

% al;
¥ ¥ ™
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Slide credit: Bernt Schiele B. Leibe
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection

29



Topics of This Lecture

* Review: Probability Theory
> Probabilities
> Probability densities
> EXxpectations and covariances

* Bayes Decision Theory
> Basic concepts
Minimizing the misclassification rate
Minimizing the expected loss
> Discriminant functions

Y

Y
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B. Leibe
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Probability Theory

“Probability theory is nothing but common sense reduced
to calculation.”
Pierre-Simon de Laplace, 1749-1827
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Image source: Wikipedia
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Probability Theory

* Example: apples and
> We have two boxes to pick from.
> Each box contains both types of fruit.
> What is the probability of picking an apple?

* Formalization
- Let B e{r,b} be arandom variable for the box we pick.
. Let F e{a,0}be a random variable for the type of fruit we get.
Suppose we pick the red box 40% of the time. We write this as
p(B=r)=04 p(B=Db)=0.6

The probability of picking an apple given a choice for the box is
p(F=a|B=r)=0.25 p(F=a|B=b)=0.75
What is the probability of picking an apple?
p(F =a) ="

B. Leibe

Y

Y

Y
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Image source: C.M. Bishop, 2006




Probability Theory
&
* More general case —
> Consider two random variables
Xe{x}and Y e{yj}
. . Yj Nij } T
> Consider N trials and let
niy; = #FHX =z NY =y;}
c; = #F#{X =z;} T
> ri = #Y =y;}
= * Then we can derive .
= . Joint probability X =2, Y =y;) = —7
% : - Cy
3 > Marginal probability p(X =x;) = —.
0 N
£ s
‘2% > Conditional probability p(Y =y;| X =a;) = %
) 33

B. Leibe Image source: C.M. Bishop, 2006



RWTHAACHEN

o UNIVERSITY
Probability Theory
&)
~
Ys Mij } Tj
* Rules of probability
> Sum rule i
- c. 1 L L
o p(X:iUi):N:Nanj = D p(X =z, Y =)
g j=1 j=1
I > Product rule
§ — . — . _ @ _ Ng; G
E = p(Y =y;|X = 2)p(X = 2;)
34
B. Leibe

Image source: C.M. Bishop, 2006



The Rules of Probability

* Thus we have

Sum Rule p(X)=> p(X,Y)

Product Rule p(X,Y) =pY|X)p(X)

:::, * From those, we can derive

=

£ p(X[Y)p(Y)

= Bayes’ Theorem Y X) =

§ y p(YX) P(X)

g where  p(X) =3 p(X|V)p(¥)
= %

B. Leibe
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Probability Densities

* Probabilities over continuous
variables are defined over their
probability density function

(pdf) p(z)
b
p( € (a,b)) = / p() da

a

p(x) Pl)

L d

ox z

* The probability that z lies in the interval (—oo, Z) is given by
the cumulative distribution function
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B. Leibe Image source: C.M. Bishop, 2006



Expectations

* The average value of some function f (x) under a
probability distribution p(X) is called its expectation

=S p@)f@)  Elf] = / p(2)f(x) da

discrete case continuous case

* If we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

1 N
n=1

* We can also consider a conditional expectation

Eq[fly] = Zp (z|y) f

""""""" 37
B Lelbe
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Variances and Covariances

* The variance provides a measure how much variability there
is in f () around its mean value E[f(x)].

var(f] = E | (f() - E[f(2)))°| = Elf(2)?] - E[f(2))?

* For two random variables = and y, the covariance is defined

by

cov|x, |

Eqylzy] — E[z]Ely]

* If x and y are vectors, the result is a covariance matrix

cov|x,y]

Exy [{x —Ex/Hy" —Ely"']}]
Eyy[xy'] —EX]E[y"]

B. Leibe
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RWTHAACHEN
UNIVERSITY

Bayes Decision Theory

Thomas Bayes, 1701-1761

“The theory of inverse probability is founded upon an
error, and must be wholly rejected.”
R.A. Fisher, 1925
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Bayes Decision Theory

* Example: handwritten character recognition

L

o

£

=

= ¢ Goal:

% > Classify a new letter such that the probability of misclassification is
o minimized.

=

&

=

. 40
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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RWNTH
Bayes Decision Theory

* Concept 1: Priors (a priori probabilities) ‘ p(Ck) ‘

> What we can tell about the probability before seeing the data.

> Example: 9
P(a)=0.75
aababaaba P(b)=0.25
baaaabaaba i-

abaaaabba
* In general: Zp(ck)zl

babaabaa
Slide credit: Bernt Schiele B. Leibe

41
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Bayes Decision Theory

* Concept 2: Conditional probabilities ‘p(X | Ck)‘

> Let z be a feature vector.

> x measures/describes certain properties of the input.
— E.g. number of black pixels, aspect ratio, ...
> p(z|C,) describes its likelihood for class C,.

1111 171

Slide credit: Bernt Schiele

F

p(x|a)

AN |

p(x]b) |

B. Leibe
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Bayes Decision Theory

* Example:

* Question:
> Which class?

. Since p(X | b)is much smaller than p(X | at)we decision should be
‘a’ here.
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Slide credit: Bernt Schiele B. Leibe



Bayes Decision Theory

T

X=25

* Example:

* Question:
> Which class?

. Since p(X | a) is much smaller than p(X | b), the decision should
be ‘b’ here.
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Bayes Decision Theory

* Example:

s

p(x|a) p(x|b)

* Question:
> Which class?
. Remember that p(a) = 0.75 and p(b) = 0.25...

> l.e., the decision should be again ‘a’.
— How can we formalize this?
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RWNTH
Bayes Decision Theory

* Concept 3: Posterior probabilities ‘p(Ck | X)‘

> We are typically interested in the a posteriori probability, i.e. the
probability of class C, given the measurement vector x.

* Bayes' Theorem:

p(C, |X)= p(xIC)P(C) _ p(xIC)P(Cy)

p(x) ) Z p(xIC;)p(C)

* Interpretation
Likelthood x Prior

Normalization Factor

Posterior =
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Bayes Decision Theory

tp %&x |b) Likelihood

p(xil a)p(a ’

p(x|b)p(b)  Liketihood x Prior

"

Decision boundary

|p(alx)

p(b | X) Posterior — Likelihood X Prior

NormalizationFactor
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Bayesian Decision Theory

* Goal: Minimize the probability of a misclassification

'y

p(@,C1) The green and blue

My Tegions stay constant.
$ Only the size of the
red region varies!

? R1 ! " Ro 3

g

= p(mistake) = p(x € R1,C2) +p(x € Ra,C1)

(@)]

£ = / p(x,Cs) dx + / p(x,Cq) dx.

9 R1 Ro

(O]

= [ wCRopax+ [ pCiopixax

= T Rz 48

B. Leibe
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Bayes Decision Theory

* Optimal decision rule
> Decide for C, if

p(C1|z) > p(C2|)

> This is equivalent to

p(z|C1)p(C1) > p(x]|Ca)p(Co)

.
Decision threshold &

(0))

_*E > Which is again equivalent to (Likelihood-Ratio test)
=

p([C1) _ p(C2)

@

S p(x|C2) ~ p(Cy)

£ \ y

g

=

Slide credit: Bernt Schiele B. Leibe
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RWTH
Generalization to More Than 2 Classes

* Decide for class k£ whenever it has the greatest posterior
probability of all classes:

p(Cxlx) > p(Cjlz) Vi #k

p(z|Ci)p(Cr) > p(z|C;)p(C;) Vi #k

* Likelihood-ratio test

p(alC) _ p(C))

p(z|C;) — p(Ck)

Vj # k
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Classifying with Loss Functions

* (Generalization to decisions with a loss function
> Differentiate between the possible decisions and the possible true

classes.
> Example: medical diagnosis
— Decisions: sick or healthy (or: further examination necessary)
— Classes: patient is sick or healthy

> The cost may be asymmetric:

loss(decision = healthy|patient = sick) >>

loss(decision = sick|patient = healthy)

Slide credit: Bernt Schiele B. Leibe
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Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix L,

Ly; = loss for decision C; if truth s Cy.

* Example: cancer diagnosis
Decision

cancer normal

cancer ( 0 1000 )

normal 1 0

Truth

Lcancer diagnosis —

B. Leibe

52



Classifying with Loss Functions

* Loss functions may be different for different actors.

“nvest” .dont”
> Example: invest

e ()
LstocktradeT(Sprm;me) B ( 2 Ogazn 0 )

1 .
Lpani (subprime) = < 5Cgain

= Different loss functions may lead to different Bayes optimal
strategies.
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Minimizing the Expected Loss

* Optimal solution is the one that minimizes the loss.
> But: loss function depends on the true class, which is unknown.

* Solution: Minimize the expected loss

E[L] = ;zjjfn Ly;ip(x,Cp) dx

* This can be done by choosing the regions ‘R, such that
E[L] =)  L;p(Ck|x)
k

which is easy to do once we know the posterior class
probabilities p(Ck|x)
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Minimizing the Expected Loss

* Example:
> 2Classes: (', C,
> 2 Decision: «a,, a,
- Loss function: L(aj|Cx) = Ly,

> Expected loss (= risk R) for the two decisions:
Eo, L] = R(a1|x) = Li1p(C1]x) + L21p(C2|x)
Eo, L] = R(az2|x) = Li2p(C1]x) + La2p(C2|x)

* Goal: Decide such that expected loss is minimized
. lLe.decide o, if R(a|x) > R(a|x)

Slide credit: Bernt Schiele B. Leibe
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Minimizing the Expected Loss

R(as|x) > R(a1|x)
L12p(C1|x) + Lagp(Ca|x) > L11p(Ci|x) + La1p(Ca|x)
(L1z — L11)p(C1|x) > (L21 — La2)p(Ca|x)
(L2 — L11) _ p(Calx)  p(x|C2)p(C2)
)

(L21 — Lo g P(Cl\x) N P(X\Cl)p(cl)

p(x|C1) - (L21 — La2) p(C2)
p(x|C2) (L12 — L11) p(Cy)

— Adapted decision rule taking into account the loss.
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The Reject Option

p(C1]z) p(Ca|x)

1.0
‘T

0.0 /

‘ L] - . a;.
reject region

* Classification errors arise from regions where the largest
posterior probability p(Ck|x) is significantly less than 1.

> These are the regions where we are relatively uncertain about class
membership.

> For some applications, it may be better to reject the automatic
decision entirely in such a case and e.g. consult a human expert.
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Discriminant Functions

* Formulate classification in terms of comparisons
> Discriminant functions

Y1 (x), ..., yr(x)
. Classify z as class C, if
yk(x) > y;(x) Vj#k
* Examples (Bayes Decision Theory)
yk(z) = p(Cklz)
yr(z) = p(z|Cx)p(Ck)
yr(x) = logp(x|Ck) + log p(Cr)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Different Views on the Decision Problem

» yi(x) < p(x|Cr)p(Ck)

> First determine the class-conditional densities for each class
iIndividually and separately infer the prior class probabillities.

> Then use Bayes’ theorem to determine class membership.
= Generative methods

* yk(@) = p(Crlz)
> First solve the inference problem of determining the posterior class
probabilities.

> Then use decision theory to assign each new z to its class.
= Discriminative methods

* Alternative

- Directly find a discriminant function gy (x)which maps each input x
directly onto a class label.
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RWNTH
Next Lectures...

O = N w

— Histograms
— Gaussian distribution @
— Mixtures of Gaussians

* Ways how to estimate the probability densities  p(x|Cx)
— k-Nearest Neighbor
— Kernel Density Estimation
* Discriminant functions
> Linear discriminants

> Non-parametric methods
> Parametric methods
> Support vector machines

— Next lectures...
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References and Further Reading

* More information, including a short review of Probability
theory and a good introduction in Bayes Decision Theory
can be found in Chapters 1.1, 1.2 and 1.5 of

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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