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Machine Learning — Lecture 19

Repetition

31.01.2019

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTH/THE
Announcements (2)

¢ Today, I'll summarize the most important points from the
lecture.
» ltis an opportunity for you to ask questions...
» ...or get additional explanations about certain topics.
» So, please do ask.

* Today's slides are intended as an index for the lecture.
» But they are not complete, won't be sufficient as only tool.
» Also look at the exercises — they often explain algorithms in detail.

B. Leibe

Course Outline

¢ Fundamentals
» Bayes Decision Theory
» Probability Density Estimation
» Mixture Models and EM

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

B. Leibe

Announcements

¢ Exams
» Special oral exams (for exchange students):
— We're in the process of sending out the exam slots
— You'll receive an email with details tonight
— Format: 30 minutes, 4 questions, 3 answers

» Regular exams:
— We will send out an email with the assignment to lecture halls
— Format: 120min, closed-book exam

Machine Learning Winter ‘18

B. Leibe

Announcements (3)

* Seminar in the summer semester
» Current topics in Computer Vision and Machine Learning
» Quick poll: Who is interested?

Machine Learning Winter ‘18

B. Leibe

RWTH CHET
Recap: Bayes Decision Theory
p(Xla)/ﬂ x|b) Likelihood
X
p(x|a)p(a
D(X | b) p(b) Likelihood x Prior
Cg) Q
° X
% Decision boundary
§ p(a| X) p(b | X Posterior = Likelihood x Prior
2 J NormalizationFactor|
k- X
de credit Bernt Schiele B. Leibe Jmage source: G\, Bishop 200
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Recap: Bayes Decision Theory

* Optimal decision rule
» Decide for C, if

p(Ci|z) > p(Cal)
» This is equivalent to

p(x|C1)p(C1) > p(z|C2)p(C2)

» Which is again equivalent to (Likelihood-Ratio test)

p(z|C1) _ p(Ca)
p(z|C2) = p(C1)
t_v_l
Decision threshold &
ide credit: Bernt Schiele B. Leibe 7

RWTH/THE
Recap: Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix Ly

Ly; = loss for decision C; if truth is Cy.
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* Example: cancer diagnosis
Decision
cancer normal
I £ cancer ( 0 1000 )
cancer diagnosis — E’ normal 1 0
B. Leibe o
RWTH/ACHEN

Recap: The Reject Option

#(Cs ) p(Cal)

0.0 - -
reject region
* Classification errors arise from regions where the largest
posterior probability p(Cx|x) is significantly less than 1.
» These are the regions where we are relatively uncertain about class
membership.
» For some applications, it may be better to reject the automatic
decision entirely in such a case and e.g. consult a human expert.

z

11

B. Leibe Jmage source: CM. Bishop, 200
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Recap: Bayes Decision Theory

* Decision regions: R,, R,, R,. ...

v

. |7 — ¥

> A -
7N -
- . P
/"4/ T - 7
g S~ -
R1 R2 R3
8

ide credit Bernt Schiele B. Leibe

TRWTH/JCHEN
Recap: Minimizing the Expected Loss

* Optimal solution minimizes the loss.

» But: loss function depends on the true class,
which is unknown.

IS
"Cise
1.3

* Solution: Minimize the expected loss

E[L] = g Z jﬂ Ligp(x, Cx) dx

* This can be done by choosing the regions R;uch that
E[L] =3 Lijp(Cilx)
k

which is easy to do once we know the posterior class
probabilities  P(Ck[x)

10

B. Leibe
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation
» Mixture Models and EM

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

12

B. Leibe




TRWTH/ACHEN
Recap: Gaussian (or Normal) Distribution

* One-dimensional case
» Mean p

» Variance o2 / \

2
Nl ) = ——exp {JQT‘”}

Vi(x|p.0?)

* Multi-dimensional case V. N
> Mean u
» Covariance ¥

Machine Learning Winter ‘18

N1 ®) = s o0 { g ™= - )}

13
B. Leibe

Image source: CM, Bishop, 200¢

RWTH//CHE
Recap: Bayesian Learning Approach
* Bayesian view:

» Consider the parameter vector # as a random variable.
» When estimating the parameters, what we compute is
Assumption: given 6, this

pal) = [ oo, 0000
doesn’t depend on X anymore

p(x,01X) = p((8, X)p(] X)

p(a]X) = / p(z16)p(6]X)do
——

This is entirely determined by the parameter ¢
(i.e. by the parametric form of the pdf).

Machine Learning Winter ‘18

15
ide adapted from Bernt Schiele B Leibe

RWTH/ACHEN
Recap: Histograms
* Basic idea:
» Partition the data space into distinct

bins with widths A; and count the

number of observations, n,, in each

bin. 1

N
=
Pi N’Ai 0
0 05 1

& » Often, the same width is used for all bins, A; = A.
E » This can be done, in principle, for any dimensionality D...
= p
£ A .
€ [ ...but the required
3 ‘) number of bins
2 7m = grows exponen-
'f's y tially with D!
= D=1 ° n=2 N - D=3

17

lmage source: G\, Bishop, 200«

TRWTH/ T
Recap: Maximum Likelihood Approach

* Computation of the likelihood

Seg
Storeieg 7
. Single data point:  P(2n|0) 4

» Assumption: all data points X = {x1,...,x,}e independent
N
L(0) = p(X]0) = ]| p(x4]0)
n=1
» Log-likelihood N
E(f) =-L(0) = - np(xn|0)
n=1

* Estimation of the parameters 6 (Learning)
» Maximize the likelihood (= minimize the negative log-likelihood)
= Take the derivative and set it to zero.

Machine Learning Winter ‘18

N 9
9 55P(@nl6) 1
—E(0) = — 205~
20 @) ,Lz::l p(zn]0)
de credit Berny Schiele B. Leibe 14

TRWTH/ T
Recap: Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for z based on
parametric form 6

Prior for the
parameters 6

p(ax) = [ PEOLORO)
ﬂ{%

Normalization: integrate
over all possible values of 6

do

» The more uncertain we are about ¢, the more we average over all
possible parameter values.

Machine Learning Winter ‘18
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B. Leibe

TOWTHACHET]
Recap: Kernel Density Estimation

* Approximation formula: Exe,;:: )

y4e.9
(x) NV

fixed V' fixed K
determine K determine V

Kernel Methods K-Nearest Neighbor

O

3

=

; .

22 * Kernel methods = * K-Nearest Neighbor

§ » Place akernel window & 1= » Increase the volume V'
o at location x and count b until the K next data

% how many data points .. points are found.

g fall inside it. -

18

ide adanted from Bernt Schiele B. Leibe




Course Outline

* Fundamentals
~ Bayes Decision Theory
» Probability Density Estimation

» Mixture Models and EM

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

* Deep Learning
» Foundations
» Convolutional Neural Networks

» Recurrent Neural Networks
B. Leibe

Machine Learning Winter ‘18

RWTH//CHE
Recap: MoG - lterative Strategy

* Assuming we knew the values of the hidden variable...

Jx)

X

ML for Gaussian #1 T I ML for Gaussian #2

% assumed known —> 1 111 22 2 2 J

£ h(j=1z,)= 1111 0 0 0

£ h(j =2lz,) = 0 000 1 1

8 N . N

2 o= Zn:l h(j = 1|.’E7L)SL'n to = Zn:l h(] ‘xn)xn
5 =N =

g 2 A = 1]zn) i1 h(j =2|zn)

21
ide credit. Bernt Schigle B. Leibe

RWTH//CHE
Recap: K-Means Clustering
* |terative procedure .
1. Initialization: pick K arbitrary ST XTI
centroids (cluster means) it '-""""{v%.t-l };{?:
WL g
. 2ot 88 s B
2. Assign each sample to the closest ;’"ﬁu ae e
centroid. AT L
o %3 v"(:
3. Adjust the centroids to be the ‘ e )
o means of the samples assigned [
ES to them. :
E
§ 4. Go to step 2 (until no change) !
[}
£ . .
= + Algorithm is guaranteed to
3 converge after finite #iterations. |
£ . Local optimum "1
] »  Final result depends on initialization. oo »
ide credit- Bernt Schiele. B. Leibe
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TOWTHACHET]
Recap: Mixture of Gaussians (MoG)

* “Generative model”

“Weight” of mixture

p(j) =m; component
1
2l 3
p(.r) 0 Mixture
/\(A p(x]6;) component
X
l Mixture density

p(z) M
/X:A p(16) = 3 p((6;)p())

i=1

— j
20
ide credit: Bernt Schiele B. Leibe

Recap: MoG - lterative Strategy

* Assuming we knew the mixture components...

v |M

‘]71‘1

p(j = 2|z)

lil_’I_’L 222 2 J

* Bayes decision rule: Decide j =1 if

(i = 1zn) > p(j = 2lzn)

22

ide credit Bernt Schigle B. Leibe
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RWTH/ACHEN
Recap: EM Algorithm
* Expectation-Maximization (EM) Algorithm EXe,:I::
» E-Step: softly assign samples to mixture components &

N (x|, Z5

ﬁ
I 17rkN(xn|NL72k)
» M-Step: re-estimate the parameters (separately for each mixture

component) based on the soft assignments
N

Nj Z'y] X,) = soft number of samples labeled j

75(Xn) Vi=1,....,K, n=1,...,N

$new ~ new ~ new\ T
DA 7 E %5 (%n) (%n = 157) (%0 — 25°")
J n=1 24
de adapted from Bernt Schiele B. Leibe




Course Outline

* Fundamentals
~ Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

* Deep Learning
» Foundations o
» Convolutional Neural Networks
» Recurrent Neural Networks

Machine Learning Winter ‘18

B. Leibe

TRWTH/ACHEN
Recap: Least-Squares Classification

* Simplest approach
» Directly try to minimize the sum-of-squares error
N

E(w) =Y (y(xn;w) — t,)°

n=1
—~ 1 -~ ~
Ep(W) = 5Tr {(XW ~T)T(XW — T)}
» Setting the derivative to zero yields
W = (XTX)'XTT =XIT

See
E“'erc;;ge
27

» We then obtain the discriminant function as
—~ ~ T
y(x) = Wk = TT(XT) %

» = Exact, closed-form solution for the discriminant function
parameters.

Machine Learning Winter ‘18

27
B. Leibe

TRWTH/ACHEN
Recap: Generalized Linear Models

¢ Generalized linear model
T
y(x) = g(w"x +wo)
» g( - ) is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. <  WIX+wy = const.

» If g is monotonous (which is typically the case), the resulting decision
boundaries are still linear functions of x.

* Advantages of the non-linearity
» Can be used to bound the influence of outliers
and “too correct” data points.
» When using a sigmoid for g(-), we can interpret .
the y(x) as posterior probabilities. 9(a) = L
1+ exp(—a)
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B. Leibe
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TWTH/ /T
Recap: Linear Discriminant Functions

* Basic idea

» Directly encode decision boundary

» Minimize misclassification probability directly.
y=0|x,

* Linear discriminant functions y>0

y(x) = whx +uwp y<0

weight vector “bias”
(= threshold)

Wa
vl

» w, w, define a hyperplane in RP.

» If a data set can be perfectly classified by a linear discriminant, then
we call it linearly separable.
26

de adapted from Bernt Schiele B Leibe

TRWTH/JCHEN
Recap: Problems with Least Squares

* Least-squares is very sensitive to outliers!

» The error function penalizes predictions that are “too correct”.
28

lmage source: G\, Bishop, 200¢
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Recap: Linear Separability

* Up to now: restrictive assumption
» Only consider linear decision boundaries

* Classical counterexample: XOR

30

ide credit Bernt Schigle B. Leibe




RWTH/THE
Recap: Extension to Nonlinear Basis Fcts.

* Generalization
» Transform vector x with M nonlinear basis functions qu(x):

M
yr(x) = Z Wi (X) + wio
=

* Advantages
» Transformation allows non-linear decision boundaries.

» By choosing the right ¢;, every continuous function can (in principle)
be approximated with arbitrary accuracy.

* Disadvatage

» The error function can in general no longer be minimized in
closed form.

= Minimization with Gradient Descent
B. Leibe

Machine Learning Winter ‘18
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TRWTH/ACHEN
Recap: Logistic Regression

* Let's consider a data set {¢,,,t, } withn =1,...,N,
where ¢, = ¢p(xand  t, €{0,1} t = (t1,...,tn)7

* Withy, = p(C4|o,), we can write the likelihood as
N

p(tiw) = ] ol (1=} ™"
n=1

* Define the error function as the negative log-likelihood
E(w) = —Inp(t|w)

= = {talnyn + (1 —t,) In(1—y,)}

» This is the so-called cross-entropy error function.

Machine Learning Winter ‘18

33

TRWTH/ACHEN
Recap: Iteratively Reweighted Least Squares

* Update equations
W(T+1) _ W(T) _ (@TR¢)—1§T(Y _ t)

= (8"R®)"! {@TR@wW — 3T (y - t)}
= (#"R®) &Rz
with z=®w —R Xy —t)

* Very similar form to pseudo-inverse (normal equations)
» But now with non-constant weighing matrix R. (depends on w).
» Need to apply normal equations iteratively.
= lteratively Reweighted Least-Squares (IRLS)
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RWTH/ACHEN
Recap: Probabilistic Discriminative Models

* Consider models of the form
p(Cil@) = y(¢) =o(w'¢)
with p(Calep) = 1—p(Ci|9)

* This model is called logistic regression.

* Properties
» Probabilistic interpretation
» But discriminative method: only focus on decision hyperplane
» Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C;) and p(Cy).

32

B. Leibe

TOWTHACHET]
Recap: Iterative Methods for Estimation

* Gradient Descent (15t order)
w) = w( _ ) VE(w)|

» Simple and general
» Relatively slow to converge, has problems with some functions

wi(m)

* Newton-Raphson (2" order)

WD = wl) — HVE(w)| )

where H = VVE(w)s the Hessian matrix, i.e. the matrix of
second derivatives.

» Local quadratic approximation to the target function
» Faster convergence

34
B. Leibe
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TOWTHACHET]
Recap: Softmax Regression

* Multi-class generalization of logistic regression
» In logistic regression, we assumed binary labels ¢, € {0,1}
» Softmax generalizes this to K values in 1-of-K notation.
Py =1x;w) exp(w] x)
Py =2[x;w) 1 exp(w; x)
ylw) = . = Y :
21 exp(w)] x)

Ply = Klx;w) exp(W x)

» This uses the softmax function

explag)

5, (a;)

» Note: the resulting distribution is normalized.

36
B. Leibe
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TRWTH/ACHEN
Recap: Softmax Regression Cost Function

* Logistic regression
» Alternative way of writing the cost function

N
E(w) = =Y {talnyn + (1—t) In(1—yn)}
n=1

N 1
- 722 {]I (tn = k?) lnP(yn = k'X";W)}

* Softmax regression
» Generalization to K classes using indicator functions.
N K (wlx)
Ew) = -3} {H(t" =k)ln I?Xpik}
n=1k=1 Zj:] exp(w;x)
N
Vw B(w) = = [[(tn = k) In P (y, = klxn; w)]
n=1 B. Leibe 87
RWTH//CHE

Recap: Generalization and Overfitting

test error

training error

* Goal: predict class labels of new observations
» Train classification model on limited training set.
» The further we optimize the model parameters, the more the training
error will decrease.
» However, at some point the test error will go up again.
= Overfitting to the training set!

39
B. Leibe

lmage souce: B, Schiel
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TRWTH/ACHEN
Recap: SVM — Primal Formulation

¢ Lagrangian primal form

1 N
L, = 5 (w2 7;(1” {ta(WwTx, +b) — 1}

N
1
= 5 IWIP = an {tay(xn) — 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
an 2 0 A >0
thy(xn) =1 > fx) >0
an {try(xn) —1} = 0 A(x) = 0

41
B. Leibe

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

Machine Learning Winter ‘18
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B. Leibe

TRWTH/ T
Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying
1 2
arg min —||wj
gmin 3w
under the constraints
ty(WTx, +b) >1 Vn

based on training data points x,, and target values ¢, € {—1,1}
40

Machine Learning Winter ‘18

B. Leibe

Recap: SVM - Solution

* Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E antnXy
n=1

~ Sparse solution: a,, # 0 only for some points, the support vectors
= Only the SVs actually influence the decision boundary!

» Compute b by averaging over all support vectors:

b= NLS Z tn — Z amtmlexn

nes meS
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B. Leibe




Recap: SVM — Support Vectors

* The training points for which a,, > 0 are called
“support vectors”.

¢ Graphical interpretation:
» The support vectors are the
points on the margin.
» They define the margin
and thus the hyperplane. o

= All other data points can
be discarded!

“@\
o

/Margin

43

Image source: C. Burges, 199
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ide adapted from Bernt Schiele B. Leibe

RWTH/THE
Recap: SVM for Non-Separable Data

* Slack variables
» One slack variable £, > o for each training data point.

* Interpretation
» &, = o for points that are on the correct side of the margin.
» &, = |t, — y(x,)| for all other points.

RWTHACHE
Recap: SVM — Dual Formulation
+ Maximize N A E*Gr:,:: o
Ly(a) = Z an — 5 Z Z An@mtptm (X5 Xn)
n=1 n=1m=1

under the conditions

%

0 Vn

Qn,

N
Zantn =0
n=1

* Comparison
» Ly is equivalent to the primal form L,, but only depends on a,,.
» L, scales with O(D?).
» L, scales with O(N®) — in practice between O(IN) and O(N?).

Machine Learning Winter ‘18

44

de adapted from Bernt Schiele B Leibe

® Point on decision
5 boundary: ¢, =1
E
= . - ;
2 Misclassified point:
= &>1
5
o
£ » We do not have to set the slack variables ourselves!
o
< = They are jointly optimized together with w.
45
B. Leibe
RWTH/ACHEN

Recap: Nonlinear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training

RWTH/CHED
Recap: SVM — New Dual Formulation
* New SVM Dual: Maximize Srorac
N 1 N N €25
Ld(a) = Z a, — 5 Z Z anamtntm(xaxn)
n=1 n=1m=1
under the conditions This is all
IS IS al
0 an- C that changed!
= N
5 > ant, = 0
§ n=1
2
§ * This is again a quadratic programming problem
= = Solve as before...
.E
8
= 46
de adapted from Bernr Schiele B Leibe
RWTH/CHED

Recap: The Kernel Trick

* Important observation
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set is separable:
r . .

D x— H(x)

ide credit- Ravmond Mooney
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» ¢(x) only appears in the form of dot products ¢(x)T¢(y):
y(x) = wio(x)+b

N
= 3 antud(x,)"6(x) + b

n=1
» Define a so-called kernel function k(x,y) = ¢(x) ¢(y).

» Now, in place of the dot product, use the kernel instead:
N
y(x) = Z antnk(xn: X) +b
n=1
» The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute ¢(x) explicitly)!

48

B. Leibe




RWTH//CHEN
Recap: Kernels Fulfilling Mercer's Condition
* Polynomial kernel

k(x,y) = (x"y + 1)

* Radial Basis Function kernel

x — v)2
k(x, Y) = €xp {—(27},)} e.g. Gaussian

* Hyperbolic tangent kernel

k(x, y) = tanh(/-chy + (5) e.g. Sigmoid

» And many, many more, including kernels on graphs, strings, and
symbolic data...

Machine Learning Winter ‘18

49
ide credit: Bernt Schiele B. Leibe

RWTH//CHE
Recap: Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
N

Ld(a) = Zan -

n=1

See
E*'erc;;ge
22

M=

N =

N
S anamtotmk(Xm, %)
n=1

1

3
i

under the conditions

0- a,- C
N
Zantn =0
n=1

¢ Classify new data points using

Machine Learning Winter ‘18

N
y(x) = Z Aptnk(Xpn,X) +b
n=1

51
B. Leibe

TRWTH/ACHEN
Recap: Classifier Combination

* We've seen already a variety of different classifiers
+ kNN

~ Bayes classifiers

» Fisher’s Linear Discriminant

» SVMs

* Each of them has their strengths and weaknesses...
» Can we improve performance by combining them?
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53
B. Leibe

TRWTH/JCHEN
Recap: Kernels Fulfilling Mercer's Condition

* Polynomial kernel
k(x,y) = (xTy + 1)

* Radial Basis Function kernel

X — v)2
k(x,y) =exp {—%} e.g. Gaussian

* Hyperbolic tangent kernel

k(x, ym e.g. Sigmoid

Actually, that was wrong in
the original SVM paper...
» And many, many more, including kernels on graphs, strings, and
symbolic data...

ide credit Bernt Schiele B. Leibe

Machine Learning Winter ‘18
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

* Deep Learning
» Foundations o Gaee O

» Convolutional Neural Networks rIT-"r\\\
» Recurrent Neural Networks E‘. 5

52
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B. Leibe

TOWTHACHET]
Recap: Bayesian Model Averaging

* Model Averaging

» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y p(XIh)p(h)

h=1
* Average error of committee
Ecom = —Eav
M

~ This suggests that the average error of a model can be reduced by a
factor of M simply by averaging M versions of the model!

» Unfortunately, this assumes that the errors are all uncorrelated. In
practice, they will typically be highly correlated.

B. Leibe
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Recap: AdaBoost — “Adaptive Boosting”

* Main idea
» Instead of resampling, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.

¢ Components
» h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
» H(x): “strong” or final classifier

* AdaBoost:

RWTHAACHE

[Freund & Schapire, 1996]

» Construct a strong classifier as a thresholded linear combination of

the weighted weak classifiers:

M
H(x) = sign <Z amhm(x)>

m=1
B. Leibe

55

Recap: AdaBoost — Intuition

® @ Welghts
Weak Increased ® @
Classifier 1 PY
Weak : (4]
®e0 Classifier 2 — @
57
de credit Kristen Grauman B. Leibe Eiqute adapted from Freund & Schapic

Recap: AdaBoost — Algorithm

e 1
1. Initialization: Set  w() = ﬁor n=1,..,N.
2. Form=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
T = > 0 (g (X) # tn)
n=1
b) Estimate the weighted error of this classifier on X:
Sy 0 I (A (X) # 1)

c) Calculate a weightina coefficient for h,,(x):

0, else
€m =

= Ind ——m
€m
d) Update the weighting coefficients:
W™ = w™ exp {am (hn(%n) # tn)}

B. Leibe

RWTHAACHE

See
&erc’be 3,
-7

o {J. i A s true

59

Recap: AdaBoost — Intuition

Consider a 2D feature space
with positive and negative
examples.

Weak ® ® o

Classifier 1 N ===

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

Machine Learning Winter ‘18

de credit- Kristen Grauman B Leibe

Eiure adapted from Freund & Schapirs

56

Recap: AdaBoost — Intuition

Weights
Weak Increased
Classifier |
Weak
o9 Classifier 2 ——
o Weak ———————F—
T classifier 3 .“
°9 @
2 Final classifier is = e
= combination of the weak .‘,.
] classifiers
S
(]
=
£
o
s
58
de credit Kristen Grauman B. Lelte Eiqute adapted from Freund & Schapic

Recap: Comparing Error Functions

E(z)

) -1 ] 1

~ Ideal misclassification error function

» “Hinge error” used in SVMs

» Exponential error function
— Continuous approximation to ideal misclassification function.
— Sequential minimization leads to simple AdaBoost scheme.
— Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

©
g
=
o
=
£
8
3
)
=
H
S
I}
=

RWTHACHE

Lmage source: Bishop, 2001

10
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Recap: Comparing Error Functions

E(z)

O )

E » Ideal misclassification error function

i » “Hinge error” used in SVMs

E > Exponential error function

©

o » “Cross-entropy error” E=- Z {taIny, + (1 —t,)In(1 —y,)}

% — Similar to exponential error for z>0.

[ — Only grows linearly with large negative values of z.

= = Make AdaBoost more robust by switching = “GentleBoost” 61
lmage sour Bishop, 200¢

Recap: Perceptrons

* One output node per class
wix) wa(x)  grix)

Output layer
Weights

E Input layer
pp—=l @) a3y &y

¢ Outputs

» Linear outputs With output nonlinearity

d
ye(x) =g (Z T'Vk-sm;)
=0

= Can be used to do multidimensional linear regression or
multiclass classification.

Machine Learning Winter ‘18

63
de adapted from Stefan Roth B Leibe

TRWTH/ACHEN
Recap: Non-Linear Basis Functions

¢ Straightforward generalization
(%) valx)  (x)

Output layer
Weights
Feature layer
Mapping (fixed)

Input layer

* Remarks
» Perceptrons are generalized linear discriminants!
» Everything we know about the latter can also be applied here.
» Note: feature functions ¢(x) are kept fixed, not learned!

©
g
=
o
=
=
8
3
©
=
=
S
I}
=

65

B. Leibe

Machine Learning Winter ‘18

Machine Learning Winter ‘18

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

62

B. Leibe

TOWTHACHET]
Recap: Non-Linear Basis Functions

* Straightforward generalization
n(x) valx)  ilx)

Output layer
Weights
Feature layer
Mapping (fixed)

Input layer

¢ Outputs

» Linear outputs with output nonlinearity
d d

yi(x) = Z Wii(a;) yk(x) =g Z "VL-;O(JZ))
=0 =0

64
B. Leibe

©
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=
o
=
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8
3
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=
H
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TRWTH/ T
Recap: Perceptron Learning

* Process the training cases in some permutation
»If the output unit is correct, leave the weights alone.

» If the output unit incorrectly outputs a zero, add the input vector to
the weight vector.

If the output unit incorrectly outputs a one, subtract the input vector
from the weight vector.

v

* Translation

w}(g;#-l) _ w](c? -n (yk(xm W) - tkn) ¢j (Xn)

» This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 1s-order (stochastic) Gradient
Descent of a quadratic error function!

66
de adapted from Geaoff Hinton B. Leibe
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RWTH//CHE RWTH CHET
Recap: Loss Functions Recap: Multi-Layer Perceptrons
* We can now also apply other loss functions * Adding more layers
» Lyloss N = Least-squares regression| n() 100 plx)
Lit,y(x)) =3, (y(x) — ta) e Output layer
» Ly loss: = Median regression Hidden |
Lit.y(x)) = 32, ly(xa) — 1 tcden fayer
) » Cross-entropy loss = Logistic regression| © |
& = | t
5 Lit,y(x)) = =3, {talIny, + (1 — ¢,) In(1 — y, )} 5 nput layer
H ! H
Ei » Hinge loss = SVM classification| =1« Output
L(t.y(x) = X2, [1 = tuy(ea)] : a
. =~ A2 -1
E » Softmax loss = Multi-class probabilistic classification| E yi(x) = g? LWA(:;)QM LI'V:‘E' )1'.7'
i - - exp(y(x)) g =0 =0
s Lt,y(x) ==, 2% {11 (tn =k)In m} o s .
B. Leibe de adapied from Siefan Roth B. Leibe
RWTH//CHE RWTH CHET
Recap: Learning with Hidden Units Recap: Gradient Descent
* How can we train multi-layer networks efficiently? * Two main steps
» Need an efficient way of adapting all weights, not just the last layer. 1. Computing the gradients for each weight
2. Adjusting the weights in the direction of
X the gradient
* |dea: Gradient Descent
» Set functi .
et up an error Uni'on « We consider those two steps separately
o E(W) = L Lt y(xn: W)) + AQ(W) ™ »  Computing the gradients: Backpropagation
= " = »  Adjusting th ights: Optimization techni
2 with aloss L(-) and a regularizer Q(-). £ justing the welgnts ptimization techniques
H 2 H
E) - Eg, Lty W) =3, (y(xa: W) —t,) L, loss E)
€ €
8 QW) = |[W]|2 L, regularizer H
E (W) = [[Wll: (“weight decay”) §
.":% = Update each weight I-V,[,.k)in the direction of the gradient LYY.) é
g i ow =
69 70
B. Leibe B. Leibe
RWTH//CHE RWTH CHET
Recap: Backpropagation Algorithm Recap: Backpropagation Algorithm
0E
)
¢ Core steps 1 ¥ ay®
2 j (k) ()
1. Convert the discrepancy E= 5 Z (t; —u;) Q @ O 9E _ 9y 9E _ i (ZJ' ) OE
between each output and its jEoutput o 029 821 oy 2z ay®
target value into an error 3_E =t —y) g
derivate. dy; =Y yleD
9E Q @ O _0F _ 50 o8 _ Z (k-1 _9E
o 5,0 9,0 Za w0 5,0 LM 5,0
2. Compute error derivatives in Vj Vi 7 9 Zj T j
2 each hidden layer from error e
3 derivatives in the layer above. 0O % O 8 ) PO 5
£ £ E Z; E E
B < s — J — k-1
o ay{ v = O O Q aw{ Y aw( Ve PO
E 3. Use error derivatives w.r.t. g - . / / /
e activities to get error derivatives oF __OE 3 Efficient propagation scheme
E w.r.t. the incoming weights ayj(k) 6\/111-(1-’(71) g > yi(kfl) is already known from forward pass! (Dynamic Programming)
2 71 2 = Propagate back the gradient from layer k and multiply with y* ™. 72
de adapted from Geoff Higion B. Leibe de adapted from Geoff Hinton B. Leibe




RWTH//CHEN
Recap: MLP Backpropagation Algorithm

* Forward Pass * Backward Pass
¢ = he 38 = LL(t.y) + 250

for k=1,...,ldo
2 = Wkly (k-1

for k=1,I-1,...,1do
h 22 —hag(y®)

P
Y = ufath) ok = by T 4 35l
- endfor h < dyf(‘+“ — WkIThH
E y = y[.:) endfor
% E = L{t,y) + \Q(W)
c
E * Notes
E » For efficiency, an entire batch of data X is processed at once.
g » © denotes the element-wise product
= B. Leibe IS
RWTH/ACHEN

Recap: Automatic Differentiation

* Approach for obtaining the gradients Exe,:::
n(x) valx)  mix) R

» Convert the network into a computational graph.

» Each new layer/module just needs to specify how it affects the
forward and backward passes.

» Apply reverse-mode differentiation.

= Very general algorithm, used in today’s Deep Learning packages
B. Leibe

Machine Learning Winter ‘18

lmage source: Christopher Qlah, colah github

TRWTH/ACHEN
Recap: Advanced Optimization Techniques

¢ Momentum

» Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

» Effect: dampen oscillations in directions of high
curvature

» Nesterov-Momentum: Small variation in the implementation

* RMS-Prop
» Separate learning rate for each weight: Divide the gradient by a
running average of its recent magnitude.
¢ AdaGrad
¢ AdaDelta
* Adam

Some more recent techniques, work better
for some problems. Try them.

©
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=

77

B. Leibe Image souice: Geglf Hinlo

Recap: Computational Graphs

Forward-Mode Differentiation (%)

« [

/30\ /:\‘ ek Apply operator ﬁ
X AO Flax =t At CD s ntdorate to every node.

oA N

Reverse-Mode Differentiation (‘%}

o [

/;'Bo.\a Y Apply operator 2£
o» |2 51 et c|-Cor tPPY p " B3
- 0 every node.

A NS

» Forward differentiation needs one pass per node. Reverse-mode
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!

Machine Learning Winter ‘18

B. Leibe

TRWTH/JCHEN
Recap: Choosing the Right Learning Rate

* Convergence of Gradient Descent
» Simple 1D example

E(m)

dE(TV)
dw
What is the optimal learning rate 7,,,?

Wi — iy

v

b [
If E'is quadratic, the optimal learning rate is given by the inverse of

v

the Hessian

A2

EEW )
o= (F20)

v

Advanced optimization techniques try to Don't go beyond
approximate the Hessian by a simplified form. this point!

If we exceed the optimal learning rate,
bad things happen!

v

Machine Learning Winter ‘18

76

B. Leibe | page source: Yann lecup et al, Efficient BackProp (19981

TOWTHACHET]
Recap: Patience

* Saddle points dominate in high-dimensional spaces!

110°
— Training error (MSE) ||
vDL e—e Norm of the gradients ||

Training error (MSE)
Norm of the gradients

i
e

100 200 300 T 50d°

= Learning often doesn’t get stuck, you just may have to wait...
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78

lmage source: Yoshua Bengi

B. Leibe
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RWTH/THE
Recap: Reducing the Learning Rate

* Final improvement step after convergence is reached

» Reduce learning rate by a
factor of 10.

Reduced

» Continue training for a few % learing rate
epochs. o
- Do this 1-3 times, then stop :t§“
training. =
@
é ¢ Effect Epoch
§ > Turning down the learning rate will reduce
2 the random fluctuations in the error due to @
§ different gradients on different minibatches.
-
% * Be careful: Do not turn down the learning rate too soon!
§ » Further progress will be much slower after that.

79

ide adapted from Geaff Hinton B. Leibe

Recap: Normalizing the Inputs

* Convergence is fastest if e
L] i
» The mean of each input variable oo Cancataon I
0
o
L]

over the training set is zero. . &
. The inputs are scaled such that - =~
all have the same covariance.
» Input variables are uncorrelated 4 R
if possible. Equalizaton

LJ
.
> e

¢ Advisable normalization steps (for MLPs only, not for CNNs)
» Normalize all inputs that an input unit sees to zero-mean,
unit covariance.
» If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).

Machine Learning Winter ‘18

81
B. Leibe | age source: Yann | ecun et al, Efficient BackProp (190¢]

TRWTH/ACHEN
Recap: Commonly Used Nonlinearities

* Sigmoid
gla) = a(a) w

:

_ 1
Itexp{—a}

* Hyperbolic tangent
gla) = tanh(a)

2 = 20(2a) -1 B
g

= -
=) * Softmax

§ (@) exp{—a;}

p} gla) = =——F——

e > expi—aj}

£

8

=

83
B. Leibe

TWTH/ /T
Recap: Data Augmentation

T [ [ =
» Much larger training set 3 2
. Robustness against expected “ m “ m] H !
variations )
—
e
same image size. " “ ' H E IM
Beneficial to also apply = o -
i NN
Applying several ColorPCA -

variations can bring another Augmented training data
80

* During testing
» When cropping was used
during training, need to
again apply crops to get

v

v

Machine Learning Winter ‘18

significantly increased runtime.

~1% improvement, but at a (from one original image)
lmage source. Lucas Beve

B. Leibe

RWTHACHE

Recap: Another Note on Error Functions
E(zn) Ideal misclassification error|

Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

I S o 2 e = ty(x)

* Squared error on sigmoid/tanh output function
» Avoids penalizing “too correct” data points.
» But: zero gradient for confidently incorrect classifications!
= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!

Machine Learning Winter ‘18

82

lmage source: Bishop, 2001

TOWTHACHET]
Recap: Commonly Used Nonlinearities (2)

* Rectified linear unit (ReLU)
g(a) = max{0, a}

* Leaky ReLU
g(a) = max{fa, a} B €[0.01,0.3]

» No offset bias anymore

» BUT: need to store activations
B. Leibe

? » Avoids stuck-at-zero units

2 » Weaker offset bias

2

= - ELU

E a, a=z0
E ‘g(a)_{eafl, a<0
2

£

8

=
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RWTHAACHE

Recap: Glorot Initialization  (Glorot & Bengo, “10]

* Variance of neuron activations
» Suppose we have an input X with n components and a linear
neuron with random weights 1 that spits out a number Y.

We want the variance of the input and output of a unit to be the
same, therefore n Var(W,) should be 1. This means

5

Var(Wy) = £ = L

n Tin
< » Or for the backpropagated gradient 9
8 i 1 5
£ Var(W;) = — £
< Tout <
2 : : 2
€ » As a compromise, Glorot & Bengio propose to use €
3 . 2 3
o Var(W) = T o
£ in out =
8 8
= =

= Randomly sample the weights with this variance. That’s it.

’ 85
B. Leibe

RWTHAACHE

Recap: Batch Normalization  [offe & Szegedy '14]

* Motivation
» Optimization works best if all inputs of a layer are normalized.

* Idea

» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

» lLe., perform transformations on all activations
and undo those transformations when backpropagating gradients

e Effect
» (Typically) much improved convergence

Machine Learning Winter ‘18
Machine Learning Winter ‘18

87
B. Leibe

RWTHACHE

Recap: He Initialization [He et al., “15]

* Extension of Glorot Initialization to ReLU units
» Use Rectified Linear Units (ReLU)

gla) = max{0,a}
» Effect: gradient is propagated with

a constant factor !
dgla) 1, a>0 B P e
da 0, else

* Same basic idea: Output should have the input variance
» However, the Glorot derivation was based on tanh units, linearity
assumption around zero does not hold for ReLU.
» He et al. made the derivations, proposed to use instead
2
Var(W) = —
Nig
86

B. Leibe

RWTHACHE

[Srivastava, Hinton '12]

Recap: Dropout

b} After applying dropout.

* Idea
» Randomly switch off units during training.
» Change network architecture for each data point, effectively training
many different variants of the network.
» When applying the trained network, multiply activations with the
probability that the unit was set to zero.
= Improved performance

88
B. Leibe

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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B. Leibe

RWTH/ /T
Recap: Convolutional Neural Networks

— Ca:t. maps 16@10x10, "
teature maps S4:1, maps 16@5
INPUT Soms s

i e, g g

$5189%C Fs:iayor  OUTPUT
2 Sl

|
| Futcondecton | Gaussian connections
Full connection

* Neural network with specialized connectivity structure
» Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
» Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

90

de credit Svetlana | azebnik B. Leibe
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Recap: CNN Structure

* Feed-forward feature extraction
1. Convolve input with learned filters
2. Non-linearity
3. Spatial pooling
4. (Normalization)

Feature maps
Normalization

* Supervised training of convolutional Spatial pooling
filters by back-propagating

classification error Non-linearity

Input Image

1 RN

Machine Learning Winter ‘18
Machine Learning Winter ‘18

9.

2

RWTH/ACHEN
UNIVERSITY

ide credit Svetlana | azebnik B. Leibe

0000
7 o

DEFTH

* All Neural Net activations arranged in 3 dimensions

» Multiple neurons all looking at the same input region,
stacked in depth

» Form a single [1x1xdepth] depth column in output volume.

Machine Learning Winter ‘18

9.

=)

de credit- FeiFei Li Andrei Karpathy B Leibe

RWTH//CHET
. UNIVERSITY]
Recap: Convolution Layers
o Naming convention:

. UNIVERSITY|
Recap: Pooling Layers
Single depth slice
X 111 2|4
max pool with 2x2 filters e
5 6 7 8 and stride 2 6 8
3.2/ 10 3|4
1. 23 4
@®
3 - .
=
= Y
2
EN Effect:
g » Make the representation smaller without losing too much information
E » Achieve robustness to translations
£
95
de adapted from EeiFei | Andrei Karpath B. Leibe

RWTH/CHED

.. UNIVERSITY|
Recap: Intuition of CNNs S
Xe’cise

¢ Convolutional net 2

» Share the same parameters
across different locations

» Convolutions with learned
kernels

Learn multiple filters
» E.g. 1000x1000 image

100 filters
10x10 filter size

= only 10k parameters

* Result: Response map
» size: 1000x1000x100

» Only memory, not params!
92

ide adapted from Marc'Aurelio Ranzato B Leibe Image source: Yann LeCu

TRWTH/ T
S UNIVERSITY
Recap: Activation Maps

ZUAARENESEInRNIEESREERS
5x5 filters

Each activation map is a depth
slice through the output volume.
Activation maps

Machine Learning Winter 18
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de adanted from Eeifei 1i Andrei Karpath B. Leibe

TOWTHACHET]
UNIVERSITY
Recap: AlexNet (2012)

) [ 1
%‘ 5
i ‘ )
)
“\drstrid b
)

|

= 9 :I:o’hlw
* Similar framework as LeNet, but

» Bigger model (7 hidden layers, 650k units, 60M parameters)

» More data (106 images instead of 103)

» GPU implementation

» Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012.

Lmage souce: A Krizheveky | Suiskever and G.E Hinton NIPS 201
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http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Recap: VGGNet (2014/15)

Con Net Confizuration

RWTH/ACHEN
UNIVERSITY

* Main ideas

A [ ALRN
TTwveizht | 11 weight
yers Iny

15 weight
layers

~ Deeper network

» Stacked convolutional com It

layers with smaller
filters (+ nonlinearity)

ers.
oAt iy o
LRN | comvd6d | com36d | comi-ed
5 :
2

com T8 | con3-TH | o

» Detailed evaluation
of all components

736 [ com3-256 | oo

ce3-256 | eo

© ST e <
5B Results com3-S12 | comd-312 | o
§ » Improved ILSVRC top-5 B,
® error rate to 6.7%. HE==H stz | oo
c convi-512 | comv3-512 | com
= conv3-512
g ) . "
FC-i056 Mainty used
g FC-409%6
% r(\-mcm
= . 97
B. Leibe lmage sou imonyvan isserma
UNIVERSITY]

Discussion

=

* GooglLeNet
» 12x fewer parameters than AlexNet
= ~5M parameters

» Where does the main reduction come from?
= From throwing away the fully connected (FC) layers.

* Effect
» After last pooling layer, volume is of size [7x7x1024]
» Normally you would place the first 4096-D FC layer
here (Many million params).
» Instead: use Average pooling in each depth slice:
= Reduces the output to [1x1x1024].

= Performance actually improves by 0.6% compared to %‘
when using FC layers (less overfitting?)

Machine Learning Winter ‘18

99

de credit- Andrei Karpath B Leibe egedyeial

Recan: Residual Networks

AlexNet, 8 layers ¥ VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) {ILSVRC 2014) (ILSVRC 2015)

¢ Core component
» Skip connections
bypassing each layer
Better propagation of
gradients to the deeper F(x)

ers
This makes it possible

to train (much) deeper H(x) = F(x) + x @
networks.

v

v
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RWTH CHET
UNIVERSITY]
Recap: GoogLeNet (2014)
¢ |deas:
» Learn features at multiple scales
» Modular structure 1 ol a
: sij4aadaaiiad:
4] lyg | na
safaa]qliiyd T
18fe k
[N
i'—’ Convolution
b Inception Pooling
£ module
> Other
£ —
= 7 - .
3 ey Aucxiliary classification
° i ; outputs for training the
5 - lower layers (deprecated)
©
= (b} Inception module with dimension reductions. 98
B. Leibe lmage source: gedy et al
RWTH CHET
. .. UNIVERSITY]
Recap: Visualizing CNNs
Low-Level ) Mid-Level _.High-Leve ] Trainable
Feature Feature Feature Classifier
@®
3
E
=
2
=
©
S
E Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
£
100
de credit Yann leCun B. Lelte
RWTH CHET
UNIVERSITY]

Recap: Analysis of ResNets

¢ The effective paths in ResNets
are relatively shallow
» Effectively only 5-17 active modules

¢ This explains the resilience to deletion

» Deleting any single layer only affects a
subset of paths (and the shorter ones
less than the longer ones).

T

* New interpretation of ResNets -
» ResNets work by creating an ensemble
of relatively shallow paths
» Making ResNets deeper increases the
size of this ensemble
» Excluding longer paths from training R Tae—
does not negatively affect the results. e 102

Lmage souice: Vet etal 201

Machine Learning Winter ‘18
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RWTHAACHE RWTHACHE

Recap: R-CNN for Object Detection Recap: Faster R-CNN for Object Detection

* One network, four losses

» Remove dependence on
external region proposal

algorithm.
I o
Rol pooling
Instead, infer region propasals / ;
proposals from same

Bbox reg | SVMs Classify regions with SVMs

Bbox reg || SVMs
Bbox reg | | SVMs Forward each region
ConvNet through ConvNet
| ConvNet
LY

v

:9 y 4 Warped image regions gg CNN Region Propasal Network
o} - .
§ § » Feature sharing lb:',rnmnp'
= Regions of Interest (Rol) 2 » Joint training
£ from a proposal method £ = Object detection in
S S a single pass becomes o
2 2 possible. 4
S 5 LT
o ©
= = 104
ide credit: Ross Girshick B. Leibe de credit Ross Girshick
RWTH/ACHEN RWTH/ACHEN
Recap: Fully Convolutional Networks Recap: Semantic Image Segmentation
« CNN ﬂ_l, ) ‘ “tabby cat”
% "6 7 PP ® \ TS ‘ !
E \
. FCN convolutionalization
$ ¢ tabby cat heatmap
e IS ) e
“5 p PR ,l'c,b 20330 -E
= E
= = .
2 2| * Encoder-Decoder Architecture
c £ .
E e |ntuition E > Problgm: FCN output has !ow resolution _ .
B ~ Think of FCNs as performing a sliding-window classification, e - Solution: perform upsampling to get back to desired resolution
§ producing a heatmap of output scores for each class § » Use skip connections to preserve higher-resolution information
= 105 = 106
lmage source. Long Shelbamer _Darrell lmage source: Newell ot ol

RWTHACHE

Course Outline Recap: Neural Probabilistic Language Model

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

“softmax” units (one per possible next word) |

skip-layer
connections,

units that learn to predict the output word from features of thelinput words |

* Classification Approaches
» Linear Discriminants
» Support Vector Machines

learmed distributed
encoding of word t-2

learned distributed
encoding of word t-1

) table look-up table look-up
~ Ensemble Methods & Boosting index of word at t-2 index of word at t-1

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

* Coreidea

» Learn a shared distributed encoding (word embedding) for the words
in the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.

de adapted from Geaoff Hinton B. Leibe
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RWTH//CHE RWTH CHET
Recap: word2vec S Recap: word2vec CBOW Model
. B\ Input layer
* Goal * Continuous BOW Model e faver
» Make it possible to learn high-quality - » Remove the non-linearity . o
word embeddings from huge data sets sum from the hidden layer a W
(billions of words in training set). : N . Share the projection layer qd
for all words (their vectors ey o Output laye
* Approach ) CBOW are averaged) ;;s{dm layer
» Define two alternative learning tasks . . s 8
for learning the embedding: A = Bag-of-Words model Wew ¥ Wiy |y
e — “Continuous Bag of Words” (CBOW) m a (order of the words does not
£ — “Skip-gram” to matter anymore)
2 . Designed to require fewer parameters. it - =3 / / V-dim
£ = W/
g Skip-gram A e &
- -
@ o
% e %
g g CxTdim
109 110
B. Leibe e souce: Mikoloy et 8l 201 B. Leibe Image source: Xin Rong 201
RWTH//CHE RWTH CHET
Recap: word2vec Skip-Gram Model Recap: Problems with 100k-1M outputs
. . § ' . . B\ Input layer
* Continuous Skip-Gram Model [/ ot Faver * Weight matrix gets huge! g e
» Similar structure to CBOW " v, » Example: CBOW model o
» Instead of predicting the current » One-hot encoding for inputs AW,
word, predict words It aver /Wi = Input-hidden connections are o
within a certain range of P Hidden laver/ - just vector lookups. " Hidden layer_Cuwut laye
the current word. B -~ 7 H ™ h for th 8
. . f > is is not the case for the
- ﬁlsthrfi\’/so\xizght to the more ; hidden-output connections! Wiy
e e » State h is not one-hot, and
g g vocabulary size is 1M.
£ 7-d £ , . /
= o \w-,. ] =3 = W'y, has 300x1M entries /
= H £ ) W,
§ L 1 * Softmax gets expensive!
E . § » Need to compute normaliza-
5 3 5 tion over 100k-1M outputs
8 Oxrd 8 CxTdim
= m 111 = 12
B. Leibe \aoe s i B 200 B. Leibe Jmage souice Xin Rong. 201
RWTH//CHE RWTH CHET
Recap: Hierarchical Softmax Recap: Recurrent Neural Networks
n(wy.1) one to one one to many many to one many to many many to many

g aea 8 Q00 Q00
| 040 060 OEH (HK
0 0 nog oo 0oo

n(w,.3)

wyooow, oWy Wy Wi Wy

* ldea

» Organize words in binary search tree, words are at leaves
Factorize probability of word wj as a product of node probabilities
along the path.
Learn a linear decision function y = v, ;h at each node to decide
whether to proceed with left or right child node.
= Decision based on output vector of hidden units directly.

B. Leibe

v

v

* Recurrent Neural Networks
» Generalize this to arbitrary mappings

© ©
g g
= =
o o
= =
= £
8 8
3 3
© )
= =
= H
S S
I} I}
= =

13

Lmage source: Xio Rong 201
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RWTH//CHE
Recap: Recurrent Neural Networks (RNNs)
* RNNSs are regular NNs whose — =T

hidden units have additional
connections over time. L] S )y

» You can unroll them to create i i i i
a network that extends over
time. N
> When you do this, keep in mind T T T T
@ that the weights for the hidden ke i b AL
N are shared between temporal
E layers.
s L) = ]
2
=| * RNNSs are very powerful
% » With enough neurons and time, they can compute anything that can
% be computed by your computer.
©
= 15
B. Leibe lmage source: Andrei Karpath
RWTH/ACHEN
Recap: Backpropagation Through Time (BPTT)
0]
3
= .
= - Analyzing the terms
£ . ot w JE, OFE, Ohy 07 hy,
3 - Forweigntw;: Ay s Ahy Bk, Ow,;
[}
£
fg » This is the “immediate” partial derivative (with h,_, as constant)
=
17
RWTH/ACHEN

Recap: Backpropagation Through Time (BPTT)

* Summary
» Backpropagation equations

E= 3 F

1=t

8E, (35 Bhy 8—hk)
1<k<

See
E"ercﬂge
6.1

Bw.; - %ﬁ 8w,-1
dh; oh; _
== = = H W, diag (o' (hi_1))
A 12>k h;— t2imk

» Remaining issue: how to set the initial state h,?
= Learn this together with all the other parameters.
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RWTH/ /T
Recap: Backpropagation Through Time (BPTT)

y,.fult

* Configuration hy = (Waux, + Wyphoy +0)
¥ = softmax (W, h;)

* Backpropagated gradient

. IE; OE, Ohy 07 hy,

~ For weight w;;: By ; (Bh, By, Dy
116
RWTH/ACHEN

Recap: Backpropagation Through Time (BPTT)

exp
iy h_.(Lim
L L

Xi—1

* Analyzing the terms
JE, OE, Oh, 8% hy,
~ For weight w;;: = Z (JJJ)

Ay S Ohy dhy. dw;;
Ohy dh;
» Propagation term: - = -
o~ M o
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RWTHCHE
Recap: Exploding / Vanishing Gradient Problem

* BPTT equations:

adE, _ Z %%a_hk
Ay Ahy Bk, Ow;;

1<k<t
Ohy oh; T .
g = I gy =TT Widioo @)
t=izk t=izk
I
= (W)

(if t goes to infinity and [ = ¢ — k.)

= We are effectively taking the weight matrix to a high power.
» The result will depend on the eigenvalues of W,

— Largest eigenvalue > 1 = Gradients may explode.

— Largest eigenvalue < 1 = Gradients will vanish.

— This is very bad... 120

B. Leibe
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Recap: Gradient Clipping

* Trick to handle exploding gradients
» If the gradient is larger than a threshold, clip it to that threshold.

Algorithm 1 Pseudo-code

TE

8 a5

if ||g|| = threshold then
8 T

end if

» This makes a big difference in RNNs

ide adapted from Richard Socher B. Leibe

121

Recap: Elements of LSTMs

* Forget gate layer
» Look at h, ; and x, and output a
number between 0 and 1 for each
dimension in the cell state C, ;.
0: completely delete this,
1: completely keep this.

Je=o(Wy[h_r,xe] + by
¢ Update gate layer
» Decide what information to store
in the cell state.

» Sigmoid network (input gate layer)
decides which values are updated.

» tanh layer creates a vector of new
candidate values  that could be
added to the state.

ip=a (Wi-lhior,a] + )
@ tanh(We-[hi—1, 2] +

wice. Chiisiopher Qlah huip:Jcolah giioul

123
I

Recap: Gated Recurrent Units (GRU)

* Simpler model than LSTM ) "
» Combines the forget and input
gates into a single update gate z;.
» Similar definition for a reset gate r,,
but with different weights.

» In both cases, merge the cell state
and hidden state.

2 =0 (W, [hyy.24])

* Empirical results re =0 (We-[hio1,22])

~ Both LSTM and GRU can learn much 7, = tanh (W - [ry = hy_y,2:])

longer-term dependencies than

regular RNNs he = (1= 2¢) % hay + 20

» GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.

wice: Chisiopher Qlah hiip:Jcolah il

RWTHAACHE
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Recap: Long Short-Term Memory

RWTHACHE

Seg
Exer%\e A

-

t

Recap: Elements of LSTMs

* Output gate layer

» Output is a filtered version of our
gate state.
First, apply sigmoid layer to decide
what parts of the cell state to
output.
Then, pass the cell state through a
tanh (to push the values to be

v

v

)
g
£ — O — > <
Neural Network Pointwise Vector
_g Layer Operation  Transfer ~ Concatenate Copy
g
<N LSTMs
% » Inspired by the design of memory cells
< » Each module has 4 layers, interacting in a special way.
122
\age squce: Chuisiopher Olah B icolah gt T

Any More Questions?

Good luck for the exam!
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© N . op =o (W, [l @] + ba)

T between -1 and 1) and multiply it _

£ with the output of the sigmoid gate. hy = o+ tanh (C})
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= 124
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