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Course Outline

A Fundamentals
s Bayes Decision Theory

« Probability Density Estimation

A Classification Approaches
« Linear Discriminants
« Support Vector Machines
« Ensemble Methods & Boosting
« Random Forests
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A Deep Learning
« Foundations
« Convolutional Neural Networks
s Recurrent Neural Networks

jons  Subsampling Full connection
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Topics of This Lecture

A Recap

« ResNets
s Applications of CNNs

A word Embeddings

s Neuroprobabilistic Language Models
s word2vec

« GloVve

s Hierarchical Softmax

A outlook: Recurrent Neural Networks

B. Leibe



Recap: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)
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A Core component

« This makes it possible

to train (much) deeper _
networks. H(x) = F(x) + x

- « Skip connections X

c bypassing each layer

= : Better propagation of weight layer
(@) .

£ gradients to the deeper F(x) l relu
a layers -

E weight layer
£
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Recap: Analysis of ResNets

A The effective paths in ResNets
are relatively shallow
. Effectively only 5-17 active modules

A This explains the resilience to deletion

« Deleting any single layer only affects a
subset of paths (and the shorter ones
less than the longer ones).

A New Interpretation of ResNets

s ResNets work by creating an ensemble
of relatively shallow paths

s Making ResNets deeper increases the
size of this ensemble

s Excluding longer paths from training
does not negatively affect the results.
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Image source: Veit et al., 2016



RWTH
Recap: R-CNN for Object Detection

ConvNet

ConvNet

ConvNet

Slide credit: Ross Girshick B. Leibe



A One network, four losses

« Remove dependence on
external region proposal
algorithm.

Recap: Faster R-CNN

Classification Bounding-box
loss regression loss

Classification
loss
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Bounding-box

regression loss Rol pooling

« Instead, infer region
proposals from same
CNN.

« Feature sharing
¢« Joint training

Y Obiject detection in
a single pass becomes
possible.
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Region Proposal Network

feature map

Slide credit: Ross Girshick



RWNTH
Recap: Fully Convolutional Networks

“tabby cat”
A CNN
0000 O
At S S L
\
convolutionalization
W A FCN _
_ tabby cat heatmap
L
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A Intuition

« Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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Image source: Long, Shelhamer, Darrell




RWNTH
Recap: Semantic Image Segmentation

18

A Encoder-Decoder Architecture
s Problem: FCN output has low resolution
«  Solution: perform upsampling to get back to desired resolution
s Use skip connections to preserve higher-resolution information
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Image source: Newell et al.




RWTHAACHEN
UNIVERSITY

Topics of This Lecture

A word Embeddings
s Neuroprobabilistic Language Models
s word2vec
« GloVve
s Hierarchical Softmax

18
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RWTH
Neural Networks for Sequence Data

A Up to now
s Simple structure: Input vector - Processing - Output

A In the following, we will look at sequence data
s Interesting new challenges

« Varying input/output length, need to memorize state,
long-term dependencies, ...

18

A Currently a hot topic
« Early successes of NNs for text / language processing.

« Very good results for part-of-speech tagging, automatic translation,
sentiment analysis, etc.

« Recently very interesting developments for video understanding,
Image+text modeling (e.g., creating image descriptions), and even
single-image understanding (attention processes).
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Motivating Example

A Predicting the next word in a sequence
« Important problem for speech recognition, text autocorrection, etc.

A Possible solution: The trigram (n-gram) method

« Take huge amount of text and count the frequencies of all triplets (n-
tuples) of words.

s Use those frequencies to predict the relative probabilities of words
given the two previous words

18

p(ws = clwy = b,w; =a)  count(abc)

p(ws = dlwy = b,w; =a) count(abd)

« State-of-the-art until not long ago...
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Slide adapted from Geoff Hinton B. Leibe



Problems with N-grams

A Problem: Scalability
s  We cannot easily scale this to large N.
« The number of possible combinations increases exponentially
s S0 does the required amount of data

18

A Problem: Partial Observability
s With larger N, many counts would be zero.

« The probability is not zero, just because the count is zero!

Y Need to back off to (N-1)-grams when the count for N-grams is too
small.

Y Necessary to use elaborate techniques, such as Kneser-Ney
smoothing, to compensate for uneven sampling frequencies.
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Slide adapted from Geoff Hinton B. Leibe



RWNTH
Let 060s Try Neur al Net wi

sofftmax0 units (one per pojssib

internal NN structure

18

index of word at t-2 index of word at t-1

A Important issues
« How should we encode the words to use them as input?
« What internal NN structure do we need?

« How can we perform classification (softmax) with so many
possible outputs?
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RWNTH
Neural Probabilistic Language Model

“softmax” units (one per possible next word)

skip-layer K
connections

units that leafn to predict the output word from features of the input words

¢ 1

(0] . ]
_ learned distributed learned distributed
encoding of word t-2 encoding of word t-1
1‘ table look-up 1‘ table look-up
index of word at t-2 index of word at t-1
A Core idea

« Learn a shared distributed encoding (word embedding) for the words
In the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In IMLR, Vol. 3, pp. 1137-1155, 2003.

B. Leibe

Machine Learning Wi nt er
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Image source: Geoff Hinton

Slide adapted from Geoff Hinton


http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Word Embedding

A Idea Xplof T
: X5 0O T
« Encode each word as a vector in a ¥ 16 ~—_
d-dimensional feature space. ’ _ h;lo
« Typically, V» 1M, d 2 (50, 300) : >< h-’?
e _ k1O hr’ (.D
2l A Learning goal | Wratwd, JE
« Determine weight matrix W ¢ 4 that - -
performs the embedding. % o -
./-V _______f__-”
s Shared between all input words —
A Input

« Vocabulary index X in 1-of-K encoding.
« For each input X, only one row of W . 4 is needed.
Y W .4 is effectively a look-up table.
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Image source: Xin Rong, 2015
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Word Embedding: Full Network

mapping to hidden units

skip connections

18

Many parameters:
W .4 v gets huge!

A Train on large corpus of data, learn W VEd -
Y Shown to outperform n-grams by [Bengio et al., 2003].
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