Recap: Residual Networks

- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers
 - This makes it possible to train (much) deeper networks.

Recap: R-CNN for Object Detection

- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers
 - This makes it possible to train (much) deeper networks.
Recap: Faster R-CNN

- One network, four losses
 - Remove dependence on external region proposal algorithm.
 - Instead, infer region proposals from same CNN.
 - Feature sharing
 - Joint training
 - Object detection in a single pass becomes possible.

Recap: Fully Convolutional Networks

- CNN
 - FCN
 - Intuition
 - Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class

Recap: Semantic Image Segmentation

- Encoder-Decoder Architecture
 - Problem: FCN output has low resolution
 - Solution: perform upsampling to get back to desired resolution
 - Use skip connections to preserve higher-resolution information

Topics of This Lecture

- Recap
 - ResNets
 - Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Outlook: Recurrent Neural Networks

Neural Networks for Sequence Data

- Up to now
 - Simple structure: Input vector → Processing → Output
- In the following, we will look at sequence data
 - Interesting new challenges
 - Varying input/output length, need to memorize state, long-term dependencies, ...
- Currently a hot topic
 - Early successes of NNs for text/language processing.
 - Very good results for part-of-speech tagging, automatic translation, sentiment analysis, etc.
 - Recently very interesting developments for video understanding, image-text modeling (e.g., creating image descriptions), and even single-image understanding (attention processes).

Motivating Example

- Predicting the next word in a sequence
 - Important problem for speech recognition, text autocorrection, etc.
- Possible solution: The trigram (n-gram) method
 - Take huge amount of text and count the frequencies of all triplets (n-tuples) of words.
 - Use those frequencies to predict the relative probabilities of words given the two previous words
 \[
 p(w_3 | w_2 = b, w_1 = a) = \frac{\text{count}(abc)}{\text{count}(aba)} \\
 p(w_3 | w_2 = b, w_1 = a) = \frac{\text{count}(abf)}{\text{count}(abf)}
 \]
 - State-of-the-art until not long ago...
Problems with N-grams

- **Problem: Scalability**
 - We cannot easily scale this to large \(N \).
 - The number of possible combinations increases exponentially.
 - So does the required amount of data.

- **Problem: Partial Observability**
 - With larger \(N \), many counts would be zero.
 - The probability is not zero, just because the count is zero.
 - Need to back off to (N-1)-grams when the count for N-grams is too small.
 - Necessary to use elaborate techniques, such as Kneser-Ney smoothing, to compensate for uneven sampling frequencies.

Let’s Try Neural Networks for this Task

- Important issues
 - How should we encode the words to use them as input?
 - What internal NN structure do we need?
 - How can we perform classification (softmax) with so many possible outputs?

Neural Probabilistic Language Model

- Core idea
 - Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Word Embedding

- Idea
 - Encode each word as a vector in a \(d \)-dimensional feature space.
 - Typically, \(V \sim 1M, d \in (50, 300) \)

- Learning goal
 - Determine weight matrix \(W_{V \times d} \) that performs the embedding.
 - Shared between all input words.

- Input
 - Vocabulary index \(x \) in 1-of-\(K \) encoding.
 - For each input \(x \), only one row of \(W_{V \times d} \) is needed.
 - \(W_{V \times d} \) is effectively a look-up table.

Visualization of the Resulting Embedding

- (part of a 2.5D map of the most common 2500 words)
Popular Word Embeddings

- **Open issue**
 - What is the best setup for learning such an embedding from large amounts of data (billions of words)?

- **Several recent improvements**
 - word2vec [Mikolov 2013]
 - GloVe [Pennington 2014]
 - Pretrained embeddings available for everyone to download.

word2vec

- **Goal**
 - Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).

- **Approach**
 - Define two alternative learning tasks for learning the embedding:
 - "Continuous Bag of Words" (CBOW)
 - "Skip-gram"
 - Designed to require fewer parameters.

word2vec: CBOW Model

- **Continuous BOW Model**
 - Remove the non-linearity from the hidden layer
 - Share the projection layer for all words (their vectors are averaged)
 - Bag-of-Words model (order of the words does not matter anymore)

word2vec: Skip-Gram Model

- **Continuous Skip-Gram Model**
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of the current word
 - Give less weight to the more distant words

- **Implementation**
 - Randomly choose a number \(R \in [1,C] \).
 - Use \(R \) words from history and \(R \) words from the future of the current word as correct labels.
 - \(R+R \) word classifications for each input.
Interesting property

- Embedding often preserves linear regularities between words
 - Analogy questions can be answered through simple algebraic operations with the vector representation of words.
- Example
 - What is the word that is similar to small in the same sense as bigger is to big?
 - For this, we can simply compute $X = \text{vec}('bigger') - \text{vec}('big') + \text{vec}('small')$.
 - Then search the vector space for the word closes to X using the cosine distance.
 - Result (when words are well trained): vec('smaller').
- Other example
 - E.g., $\text{vec}('King') - \text{vec}('Man') + \text{vec}('Woman') \approx \text{vec}('Queen')$.

Evaluation on Analogy Questions

<table>
<thead>
<tr>
<th>Type of relationship</th>
<th>Word Pair 1</th>
<th>Word Pair 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common capital city</td>
<td>Athens</td>
<td>Greece</td>
</tr>
<tr>
<td>All capital cities</td>
<td>Astana</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>Currency</td>
<td>Angola</td>
<td>kwazania</td>
</tr>
<tr>
<td>City-in-state</td>
<td>Chicago</td>
<td>Illinois</td>
</tr>
<tr>
<td>Man-Woman</td>
<td>brother</td>
<td>sister</td>
</tr>
<tr>
<td>Adjective to adverb</td>
<td>apparent</td>
<td>rapidly</td>
</tr>
<tr>
<td>Opposite</td>
<td>possibly</td>
<td>ethically</td>
</tr>
<tr>
<td>Comparative</td>
<td>great</td>
<td>tough</td>
</tr>
<tr>
<td>Superlative</td>
<td>easy</td>
<td>toughest</td>
</tr>
<tr>
<td>Present Participle</td>
<td>think</td>
<td>luckiest</td>
</tr>
<tr>
<td>Nationality adjective</td>
<td>Switzerland</td>
<td>reading</td>
</tr>
<tr>
<td>Post tense</td>
<td>walking</td>
<td>reading</td>
</tr>
<tr>
<td>Plural nouns</td>
<td>mouse</td>
<td>swimming</td>
</tr>
<tr>
<td>Plural verbs</td>
<td>work</td>
<td>speak</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Vector Dimension</th>
<th>Training words</th>
<th>Accuracy [%]</th>
<th>Training time [Hrs x CPU (notes)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSLM</td>
<td>100</td>
<td>4k</td>
<td>34.2</td>
<td>14 x 180</td>
</tr>
<tr>
<td>CBOW</td>
<td>1000</td>
<td>6k</td>
<td>57.3</td>
<td>2 x 140</td>
</tr>
<tr>
<td>Skip-gram</td>
<td>1000</td>
<td>6k</td>
<td>66.1</td>
<td>65.1</td>
</tr>
</tbody>
</table>

- Results
 - word2vec embedding is able to correctly answer many of those analogy questions.
 - CBOW structure better for syntactic tasks
 - Skip-gram structure better for semantic tasks

Problems with 100k-1M outputs

- Weight matrix gets huge!
- Example: CBOW model
 - One-hot encoding for inputs
 - Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
 - State h is not one-hot, and vocabulary size is 1M.
 - $W_{V \times F}$ has $300 \times 1M$ entries
 - All of those need to be updated by backprop.

Solution: Hierarchical Softmax

- Idea
 - Organize words in binary search tree, words are at leaves
 - Factorize probability of word w_i as a product of node probabilities along the path.
 - Learn a linear decision function $y = v_{w_i} \cdot h$ at each node to decide whether to proceed with left or right child node.
 - Decision based on output vector of hidden units directly.
Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Embeddings in Vision
 - Siamese networks
 - Triplet loss networks
- Outlook: Recurrent Neural Networks

Siamese Networks

- Similar idea to word embeddings
- Learn an embedding network that preserves (semantic) similarity between inputs
 - E.g., used for patch matching

Recap: Discriminative Face Embeddings

- Learning an embedding using a Triplet Loss Network
 - Present the network with triplets of examples
 - Apply triplet loss to learn an embedding $f()$ that groups the positive example closer to the anchor than the negative one.
 - $\|f(x^+)_i - f(x^0)_i\|^2 < \|f(x^-)_i - f(x^0)_i\|^2$
 - Used with great success in Google’s FaceNet face recognition

Triplet Loss – Practical Implementation

- Triplet loss formulation
 - $\mathcal{L}_\text{triplet}(\theta) = \sum_{x_i,y_i,\lambda_i} \max(0, \lambda_i + D_{x_i,y_i} - D_{x_i,\lambda_i})$
- Practical Issue: How to select the triplets?
 - The number of possible triplets grows cubically with the dataset size.
 - Most triplets are uninformative
 - Mining hard triplets becomes crucial for learning.
 - Actually want medium-hard triplets for best training efficiency
- Popular solution: Offline hard triplet mining
 - Process the dataset to find hard triplets
 - Use those for learning
 - Iterate

Triplet Loss – Practical Implementation (2)

- Popular solution: Offline hard triplet mining
 - Process the dataset to find hard triplets
 - Use those for learning
 - Iterate

Topics of This Lecture

- Recap: CNN Architectures
- Applications of CNNs
- Word Embeddings
 - Neuroprobabilistic Language Models
 - word2vec
 - GloVe
 - Hierarchical Softmax
- Embeddings in Vision
 - Siamese networks
 - Triplet loss networks
- Outlook: Recurrent Neural Networks
Outlook: Recurrent Neural Networks

- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- Next lecture: Recurrent Neural Networks
 - Generalize this to arbitrary mappings

References and Further Reading

- Neural Probabilistic Language Model
- word2vec
- GloVe
- Hierarchical Softmax

References: Other Embeddings

- Face Embeddings