Machine Learning — Lecture 15

Convolutional Neural Networks I

10.01.2019

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: CNN Architectures

* Residual Networks
> Detalled analysis
> ResNets as ensembles of shallow networks

* Applications of CNNs
> Object detection
> Semantic segmentation
> Face identification
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Recap: Convolutional Neural Networks

C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
32x32 S2: f. maps C5:layer pg. layer OUTPUT
120 ' 10

Gt |T_ r"r 84
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Recap: AlexNet (2012)

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 5

Image source: A. Krizhevsky, |. Sutskever and G.E. Hinton, NIPS 2012
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j __'-5_ "\ 27 o, . 12 |\ /
[Ij , wr: 3 ﬁ N -X ' ~3 Fom 'd « f
m _ Q 3\ 13 ense ense
155 \T 3} 1600
: 192 192 128 Max =i
S(k\ Max 128 Max pooling 2048 2048
of 4 pooling pooling
S o
8« Similar framework as LeNet, but
g > Bigger model (7 hidden layers, 650k units, 60M parameters)
2 ~ More data (10° images instead of 103)
% > GPU implementation
o > Better regularization and up-to-date tricks for training (Dropout)
=
&
=



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: VGGNet (2014/15)

Main ideas
> Deeper network

> Stacked convolutional
layers with smaller
filters (+ nonlinearity)

> Detalled evaluation
of all components

Results

> Improved ILSVRC top-5
error rate to 6.7%.

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool [\, P NN |
FC-4096 viallity uscu
FC-4096
FC-1000
soft-max
7
B. Leibe

Image source: Simonyan & Zisserman
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Recap: GooglLeNet (2014)
* |deas: -
> Learn features at multiple scales
> Modular structure " Bl B
gl 8] g R KER 1
o] & Eﬁgﬁﬁlgglﬂﬁﬁlﬁﬂiﬂig
fifae 08| T
[EARE {2 ] LK |
2 | ! Convolution
g Inception + copies Pqpllng
= module S50 .
= - Other |
g | [ Auxiliary classification
@ T [ | [ | [ outputs for training the
§ \m - lower layers (deprecated)
= (b) Inception module with dimension reductions 8
B. Leibe

Image source: Szegedy et al.
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Recap: Visualizing CNNs

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe
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Topics of This Lecture

* Residual Networks
> Detalled analysis
> ResNets as ensembles of shallow networks
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Recap: Residual Networks

—
(=]
11x11 cony, 96, /4, poolf2 3% Conv, b
AlexNet, 8 layers ¥ VGG, 19 layers GoogleNet, 22 layers seme
5x5 comv, 256, poolf'2 3x3 conv, B4, poolf2 EA B =2

1

(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2014) =

| | [ |
I | | |
[ 33 conv, 384 | [ 33 conv, 128 | e =
¥ BERE =
[ 3x3 comv, 384 | [ 3x3 conv, 128 poal/2 | [ -]
¥ o
[ 33 conv, 256, poalf2 | [ 3x3 conv, 256 | R e
¥ ¥ EEEE
[ fc, 4096 | [ 33 conv, 256 | =
¥ ¥ B ER B R
[ fc, 4096 | [ 3x3 conv, 256 | =D
¥ — =
[ fc, 1000 | [ 3x3 conv, 256, poolf2 | REREE ==
EEE o
[ 3x3 conv, 512 | = o
¥ LR BT B
[ 3x3 conv, 512 | = e e
¥ ==
[ 3x3 conv, 512 | EEENERES
= ¥ — ERE2ER
X3 COnY, 212, poDly £ E
°o =
N [ 3x3 conv, 512 | N ESERER
- ¥ e B2
o) [ 3x3 conv, 512 | —
-— ¥ EXER E EN
(= [ 3x3 conv, 512 | EE= o
Y - =]
[ 3=3 conw, 512, poolf2 | ==
o | fc, 4098 | g
= | | =
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s ¥ =
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Slide credit: Kaiming He B. Leibe
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Recan: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

* Core component

> Skip connections
bypassing each layer

> Better propagation of
gradients to the deeper
layers

ResNet, 152 layers
(ILSVRC 2015)

weight layer

F(x) lrelu

weight layer

H(x)=F(x)+x

_ 13
B. Leibe
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Spectrum of Depth

—» 5 layers: easy

—— >10 layers: initialization, Batch Normalization

» >30 layers: skip connections

— >100 layers: identity skip connections

l—> >1000 layers: ?
L o ® O

shallower deeper
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Slide credit: Kaiming He B. Leibe



Spectrum of Depth

—p 5 layers: easy

—— >10 layers: initialization, Batch Normalization

» >30 layers: skip connections

— >100 layers: identity skip connections

l—> >1000 layers: ?
@ [ o [

shallower deeper

* Deeper models are more powerful
> But training them is harder.
> Main problem: getting the gradients back to the early layers
> The deeper the network, the more effort is required for this.
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Slide adapted from Kaiming He B. Leibe
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Initialization

22-layer RelLU net:
good init converges faster

0951

0.9

Error

0.851

08

0.75

Error

0.951

09

0.851

08t

0.75

30-layer RelU net:
good initis able to converge

......... nVar[w] =1

1
Enl/ar[wj =1

* Importance of proper initialization (Recall Lecture 12)
> Glorot initialization for tanh nonlinearities

> He Initialization for ReLU nonlinearities

= For deep networks, this really makes a difference!

Slide credit: Kaiming He
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Batch Normalization

0.8~ best of w/ BN w/o BN

accuracy

= = = |nception

----- BN-Baseline

------- BN-x5

BN-x30

oo BN—x5-Sigmoid
4 Steps to match Inception
| |

| .
20M 25M som  ter.

* Effect of batch normalization
> Greatly improved speed of convergence
> Often better accuracy achievable

17

Image source: loffe & Szegedy

B. Leibe
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Going Deeper
* Checklist
> Initialization ok
> Batch normalization ok

> Are we now set?
— Is learning better networks now as simple as stacking more layers?
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Slide credit: Kaiming He B. Leibe
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Slide credit: Kaiming He

Simply Stacking Layers?

CIFAR-10
train error (%) test error (%)
B m- 56-layer
56-layer
20-layer
20-layer
. : : iter. (3164) ) : i o i " ter. (3164) : : é
* Experiment going deeper
> Plain nets: stacking 3x3 convolution layers
= 56-layer net has higher training error than 20-layer net
19

B. Leibe
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Simply Stacking Layers?

CIFAR-10 ImageNet-1000
20
60p-
56-layer
44-layer 50
9 32-layer g 34|
= P 5 -layer
e NN 20-layer E40 Y
\ o
ALy A A
S plain-2 AEEN 30
plain-3 Ve— s/ lain-18
P \ - plain ;
| e S | | . | solid: test/val  J=phin-3 18-layer
0 1 2 itei{le4) 4 5 6 dashed tr’all"l 0 10 20 30 40 50

iter. (led)

* General observation

> Overly deep networks have higher training error
> A general phenomenon, observed in many training sets
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Slide credit: Kaiming He B. Leibe



Why Is That???

* A deeper model should not have
higher training error!

> Richer solution space should allow it
to find better solutions

* Solution by construction

> Copy the original layers from a learned
shallower model

> Set the extra layers as identity

> Such a network should achieve at least
the same low training error.

* Reason: Optimization difficulties

> Solvers cannot find the solution when
going deeper...
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Slide credit: Kaiming He B. Leibe



Deep Residual Learning

* Plain net

!
weight layer
anytwo
stacked layers l relu

weight layer

relu
H(x) '

> H(x) Is any desired mapping
> Hope the 2 weight layers fit H(x)
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Slide credit: Kaiming He B. Leibe



Deep Residual Learning

* Residual net

weight layer
F(x) ,l, relu identity
weight layer X

H(x)=F(x)+x

> H(x) Is any desired mapping

>—Hope-the 2-weightlayersfit-Hx)
> Hope the 2 weight layers fit F(x)
Let H(x) = F(x) + x
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Slide credit: Kaiming He B. Leibe
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Deep Residual Learning

e F(x)is aresidual mapping w.r.t. identity

X
weight layer
F(x) ,l, relu identity
weight layer X

H(x)=F(x)+x

> If identity were optimal, it is easy to set weights as 0O
> If optimal mapping is closer to identity, it is easier to find small

fluctuations

> Further advantage: direct path for the gradient to flow to the

previous stages

Slide credit: Kaiming He

B. Leibe
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[ 7x7conv,64.72 | [ 7x7conv,64,/2 |

Network Design

pool, /2 pool, /2

|  33conv,es | | 33cov,64 |

* Simple, VGG-style design s

. lainnet —i— 1. ResNet
- (Almost) all 3x3 convolutions g et et

|

|

| 3x3conv,128,/2 |
¥

[

3x3 conv, 128, /2
¥

> Spatial size /12 = #filters - 2
(same complexity per layer)

> Batch normalization
— Simple design, just deep. o) (o

3x3 conv, 128 3x3conv, 128 |

3x3 conv, 128 33 conv, 128

3x3 conv, 128 3x3 conv, 128

¥
3x3 conv, 128 3x3 conv, 128

3x3 conv, 128 3x3 conv, 128

s
| 3x3conv,256,/2 | [ 3x3 conv, 256,/2 |

3x3 conv, 256 3x3cony, 256 |

3x3 conv, 256 3x3 conv, 256

] [
] [

3x3conv, 256 | [ 3x3conv, 256
] [

h J
3x3 conv, 256

3x3 conv, 256

A 2 L 2
3x3 conv, 256 3x3 conv, 256
2

] [

3x3conv, 256 | [ 3x3conv, 256
] [
] [

3x3 conv, 256 3x3 conv, 256

| 3x3 conv, 256 | | 3x3 conv, 256 _J
¥
[ 3a3conv,256 | [ 3x3conv, 256

¥ 2
[ 33conv,256 | [ 3x3conv, 256

3x3 conv, 512, /2
¥
3x3 conv, 512

3x3 conv, 512, /2
¥
3x3 conv, 512

[ ] [
[ | [
| 3x3conv,512 | | 3x3cony, 512
[ ] [

3x3 conv, 512 3x3 conv, 512

¥
[ 33conv,52 | [ 3x3cony,512

[_3x3comv,512 | [ 3x3cony,512
¥

avg pool avg pool

[ fc 1000 | [ fc 1000 ] 2 5
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ImageNet Performance

28.2

[ 152 layers }

} 22 layers | ‘ 19 Ia*,rers

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Slide credit: Kaiming He B. Leibe
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PASCAL VOC Object Detection Performance

[101 layers ’
A
/
/
/
/
/86
. /
Engines of )/
visual recognition cg
= 34 I
§ . 16 layers
£ 8|
< shallow ’ ______ l
g ek
C
S HOG, DPM AlexNet VGG ResNet
5 (RCNN) (RCNN) (Faster RCNN)*
k=
_cc% PASCAL VOC 2007 Object Detection mAP (%)
=

27

Slide credit: Kaiming He B. Leibe
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Topics of This Lecture

* Residual Networks
> Detalled analysis
> ResNets as ensembles of shallow networks
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RWNTH
What Is The Secret Behind ResNets?

* Empirically, they perform very well, but why is that?

* He’'s original explanation [He, 2016]

> ResNets allow gradients to pass through the skip connections in
unchanged form.

> This makes it possible to effectively train deeper networks.
— Secret of success: depth is good

* More recent explanation [Veit, 2016]
> ResNets actually do not use deep network paths.

> Instead, they effectively implement an ensemble of shallow
network paths.

— Secret of success: ensembles are good

A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like Ensembles
of Relatively Shallow Networks, NIPS 2016

29


http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf

ldea of the Analysis
Effect of deleting layer f,

-
o~ B~ \ :
Ordinary feedforward network NS /2 ﬁ
Building block g -
Skipt_ f] N
connection \

oL T O\ fi /2

Residual
module

Residual network Unraveled view

* Unraveling ResNets

> ResNets can be viewed as a collection of shorter paths through
different subsets of the layers.

> Deleting a layer corresponds to removing only some of those paths
30

Image source: Veit et al., 2016

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=




RWNTH
Effect of Deleting Layers at Test Time

Error when deleting layers

Top-1 error when dropping any single block 09— T T T T T T T T T T
Lo from 200-layer residual network on ImageNet 0.8 T
M———----—--—--—--—-—----—--—_—-—— - = - === = = = = = = = = =N 1T
— residual network v2, 200 layers| I
) . 0.7k T e
- residual network baseline ' -1 T,y "I'
B ——
0.6+ | | | I Hﬁ
Foa
= P
S L 051
E g !
Q = T |
- ®oar T H S
a ! |
2 0.3 - - T E | ! |
|
0.2} | L 4+
T T $$ 1 -

o L LEsDE

00— - - — - — ool 0y 1)
0 10 20 30 40 50 60 1 2 3 45 6 7 8 910111212141516171819 20

dropped layer index Number of layers deleted

* Experiments on ImageNet classification
> When deleting a layer in VGG-Net, it breaks down completely.

> In ResNets, deleting a single layer has almost no effect
(except for the pooling layers)

> Deleting an increasing number of layers increases the error smoothly
= Paths in a ResNet do not strongly depend on each other.
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Image source: Veit et al., 2016




Which Paths Are Important?

=
Y
|
[
|
|

number of paths
tct.al gradient m'agnitu;:le

0 10 20 30 40 50
path length path length

* How much does each of the paths contribute?
> Distribution of path lengths follows a Binomial distribution
> Sample individual paths and measure their gradient magnitude
= Effectively, only shallow paths with 5-17 modules are used!
= This corresponds to only 0.45% of the available paths here. 32

Image source: Veit et al., 2016
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Summary
* The effective paths in ResNets — == |
are relatively shallow AT LA )
> Effectively only 5-17 active modules
O

* This explains the resilience to deletion |,

> Deleting any single layer only affects a

subset of paths (and the shorter ones . >

- less than the longer ones). o~ i f2 O

3l « New interpretation of ResNets ea ESGSTERAMERC frpeR e
% » ResNets work by creating an ensemble i ““““““““““
= of relatively shallow paths B I
g > Making ResNets deeper increases the ‘; e e N
0 size of this ensemble For
§ > Excluding longer paths from training e
= does not negatively affect the results. path fenath 33

Image source: Veit et al., 2016
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Topics of This Lecture

* Applications of CNNs
> Object detection
> Semantic segmentation
> Face identification
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The Learned Features are Generic

75

o)1
a

|9}
=
T

Accuracy %

— Bo etal

35_ ................ ................ ......... *Our Model_

——Sohnetal |

10 20 30 40
Training Images per—class

* Experiment: feature transfer
> Train AlexNet-like network on ImageNet

50

60

state of the art
level (pre-CNN)

> Chop off last layer and train classification layer on CalTech256
— State of the art accuracy already with only 6 training images!

B. Leibe

35

Image source: M. Zeiler, R. Fergus



Transfer Learning with CNNs

36

~m¥e_ 1 Train on ~m¥e_ 2 |f small dataset: fix all
conv-52 ImageNet conv-52 weights (treat CNN as
~ conv-64 ~ conv-64 .
maxpaol maxpool fixed feature extrac-
comr128 | comr128 | tor), retrain only the
 conv-128  conv-128 classifier
maxpool maxpool
conv-256 conv-256
cony-256 cony-256
maxpool maxpool
2 conv-512 conv-512
= conv-512 conv-512
-'GC—J' maxpaol maxpool l.e., swap the Softmax
= conv-512 conv-512 layer at the end
= conv-512 conv-512
é maxpool maxpool
©
Y FC-1096 FC-1096
) FC-4096 FC-4096
= FC-1000 FC-1000
S - sofmax @ softmax
=
B. Leibe

Slide credit: Andrej Karpathy



Transfer Learning with CNNs

~m¥e 1. Train on ~m¥e 3 |f you have medium
— ImageNet — sized dataset,

—— ~ maxpool “finetune” instead: use
conv-128 conv-128 the Ol_d W_eights as
conv-128 conv-128 initialization, train the
maspook Huaxpoot full network or only
cony-256 gameiot some of the higher
cony-256 cony-256 I
Sy e ayers.

2 conv-512 conv-512
" cony-512 cony-512 ] . )
= maxpool maxpoo Retrain bigger portion
= conv-512 conv-512 of the network
= conv-512 conv-512
g maxpool maxpool
9 __FC-a096  FC-1096
© . FC-4096 . FC-4096
= FC-1000 FC-1000
8 softmax softmax
=
B. Leibe 3

Slide credit: Andrej Karpathy



0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Other Tasks: Detection

R-CNN: Regions with CNN features

AR TR e AR |
A - - :
5 S =3

warped region

aeroplane? no.

person? yes.

“ A '.—; ¥
B HE R, ==
il | & - -
\
+ L% .
o
-
T
& =
NG 5 f'-. == 2
N\ | v
¢ o5 :
R 7\ \
ifr/ i\ J \% ]
| [N e

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

tvmonitor? no.

* Results on PASCAL VOC Detection benchmark
> Pre-CNN state of the art: 35.1% mAP  [Uijlings et al., 2013]
33.4% mAP  DPM
> R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014 40



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

* One network, four losses

> Remove dependence on
external region proposal

More Recent Version: Faster R-CNN

algorithm.

Classification
loss

Bounding-box
regression loss

> Instead, infer region
proposals from same
CNN.

> Feature sharing
> Joint training

— Object detection in
a single pass becomes
possible.

%m@/ —
/

o

Classification
loss

.

Region Proposal Network

feature map

Bounding-box
regression loss
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Faster R-CNN (based on ResNets)
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

RWTH
Faster R-CNN (based on ResNets)
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K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
CVPR 2016. 43
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
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Most Recent Version: Mask R-CNN

- Classification Scores: C

/ Box coordinates (per class). 4 * C

/ '
7L

|1
//// /
A M — e
//"/ g Conv Conv
171 ©/" Rol Align
V%

256 x 14 x 14 256 x 14 x 14 Predict a mask for

each of C classes

Cx14x 14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.
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https://arxiv.org/pdf/1703.06870.pdf

Machine Learning Winter ‘18
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Mask R-CNN Results
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YOLO /SSD

Input image Divide image into grid
3XHXxW 7x7

* |dea: Directly go from image to detection scores

* Within each grid cell
> Start from a set of anchor boxes
> Regress from each of the B anchor boxes to a final box
> Predict scores for each of C classes (including background)
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J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Umfled
Real-Time Object Detection, CVPR 2016.



https://pjreddie.com/media/files/papers/yolo_1.pdf
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Object Detection Performance
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Slide credit: Ross Girshick
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Faster RCNN

Fast RCNN

A
Rcvm }
|

Using deep convnets

2013 2014 2015 2016
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Semantic Image Segmentation

forward /inference

hackward/learning

===

% g™ 50 80

* Perform pixel-wise prediction task

> Usually done using Fully Convolutional Networks (FCNS)
— All operations formulated as convolutions
— Advantage: can process arbitrarily sized images
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Image source: Long, Shelhamer, Darrell




RWNTH
CNNs vs. FCNs

“tabby cat”

* CNN

600 P
At S S L

1

convolutionalization

tabby cat heatmap

00,00 %
5 s s

oo

* |ntuition

> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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Semantic Image Segmentation

* Encoder-Decoder Architecture
> Problem: FCN output has low resolution
> Solution: perform upsampling to get back to desired resolution
> Use skip connections to preserve higher-resolution information
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Image source: Newell et al.
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Semantic Segmentation

 Current state-of-the-art
> Based on an extension of ResNets

Machine Learning Winter ‘18

Pohlen, Hermans, Mathias, Leibe, CVPR 2017



Other Tasks: Face ldentification
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Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21
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2 095 N R N P

@ Human cropped (97.5%)

8 094 DeepFace-ensemble (97.35%)
3 0.03 DeepFace-single (97.00%)

i ——TL Joint Baysian (96.33%)

.. —— High-dimensional LBP (95.17%)
Tom-vs-Pete + Attribute (93.30%)
— combined Joint Baysian (92.42%)
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false positive rate

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-
Level Performance in Face Verification, CVPR 2014
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Slide credit: Svetlana Lazebnik


https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

Learning Similarity Functions

* Siamese Network

> Present the two stimuli to two
Identical copies of a network
(with shared parameters)

> Train them to output similar

values Iif the inputs are »
(semantically) similar. *g
2
* Used for many matching tasks 2
> Face identification ;D-EE

> Stereo estimation N y

Optical flow

Y
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Extension: Triplet Loss Networks

* Learning a discriminative embedding

> Present the network with triplets of examples
Anchor Positive

Negative

> Apply triplet loss to learn an embedding f (-) that groups the positive
example closer to the anchor than the negative one.

| (%) — f(wf)||§ < |f@?) = f=M)3

Negative

Anchor LEARNING
Negative

Anchor
Positive Posntwe

= Used with great success in Google’'s FaceNet face identification
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References and Further Reading

* ResNets

> K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.

> A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like
Ensembles of Relatively Shallow Networks, NIPS 2016.
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
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References: Computer Vision Tasks
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* Semantic Segmentation

> J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for
Semantic Segmentation, CVPR 2015.

> H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing
Network, arXiv 1612.01105, 2016.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

61

B. Leibe



