Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests

• Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Recap: Convolutional Neural Networks

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Recap: Intuition of CNNs

- Convolutional net
 - Share the same parameters across different locations
 - Convolutions with learned kernels

- Learn multiple filters
 - E.g. 1000 x 1000 image
 - 100 filters
 - 10 x 10 filter size
 - Only 10k parameters

- Result: Response map
 - Size: 1000 x 1000 x 100
 - Only memory, not params!

Recap: Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single [1 x 1 x depth] depth column in output volume.

Naming convention:

- Slide credit: Svetlana Lazebnik
Recap: Activation Maps

Each activation map is a depth slice through the output volume.

Recap: Pooling Layers

- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations
 - Pooling happens independently across each slice, preserving the number of slices

Topics of This Lecture

- Recap: CNNs
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet
- Visualizing CNNs
 - Visualizing CNN features
 - Visualizing responses
 - Visualizing learned structures
- Applications

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

ImageNet Challenge 2012

- ImageNet
 - ≈14M labeled internet images
 - 20k classes
 - Human labels via Amazon Mechanical Turk
- Challenge (ILSVRC)
 - 1.2 million training images
 - 1000 classes
 - Goal: Predict ground-truth class within top-5 responses
 - Currently one of the top benchmarks in Computer Vision

CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^6 images instead of 10^5)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

References:

- [ImageNet Classification with Deep Convolutional Neural Networks](https://arxiv.org/abs/1202.2757)
ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - 16.4% error (top-5) vs. 26.2% for the next best approach
 - A revolution in Computer Vision
 - Acquired by Google in Jan '13, deployed in Google+ in May '13

CNN Architectures: VGGNet (2014/15)

- Main ideas
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components
- Results
 - Improved ILSVRC top-5 error rate to 6.7%.

Comparison: AlexNet vs. VGGNet

- Receptive fields in the first layer
 - AlexNet: 11×11, stride 4
 - Zeiler & Fergus: 7×7, stride 2
 - VGGNet: 3×3, stride 1
- Why that?
 - If you stack a 3×3 on top of another 3×3 layer, you effectively get a 5×5 receptive field.
 - With three 3×3 layers, the receptive field is already 7×7.
 - But much fewer parameters: 3×3² = 27 instead of 7×7² = 49.
 - In addition, non-linearities in-between 3×3 layers for additional discriminativity.

CNN Architectures: GoogLeNet (2014/2015)

- Main ideas
 - “Inception” module as modular component
 - Learns filters at several scales within each module

GoogLeNet Visualization

- Inception module + copies
- Auxiliary classification outputs for training the lower layers (deprecated)
Results on ILSVRC

- VGGNet and GoogLeNet perform at similar level
 - Comparison: human performance ~5% [Karpathy]

Newer Developments: Residual Networks

- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers
 - We'll analyze this mechanism in more detail later…

ImageNet Performance

ILSRVC Winners

Comparing Complexity
Understanding the ILSVRC Challenge

- Imagine the scope of the problem!
 - 1000 categories
 - 1.2M training images
 - 50k validation images

- This means...
 - Speaking out the list of category names at 1 word/s... takes 15mins.
 - Watching a slideshow of the validation images at 2s/image... takes a full day (24h+).
 - Watching a slideshow of the training images at 2s/image... takes a full month.

More Finegrained Classes

- Generated from WordNet ontology
 - Some animal categories are overrepresented
 - E.g., 120 subcategories of dog breeds

Quirks and Limitations of the Data Set

Topics of This Lecture

- Recap: CNNs
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogleLeNet
 - ResNets
- Visualizing CNNs
 - Visualizing CNN features
 - Visualizing responses
 - Visualizing learned structures
- Applications
What Does the Network React To?

- Occlusion Experiment
 - Mask part of the image with an occluding square.
 - Monitor the output
Inceptionism: Dreaming ConvNets

Idea
- Start with a random noise image.
- Enhance the input image such as to enforce a particular response (e.g., banana).
- Combine with prior constraint that image should have similar statistics as natural images.
- Network hallucinates characteristics of the learned class.

http://googleresearch.blogspot.de/2015/06/inceptionism-going-deeper-into-neural.html
Inceptionism: Dreaming ConvNets

Topics of This Lecture

- Recap: CNNs
 - CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNets
 - Visualizing CNNs
 - Visualizing CNN features
 - Visualizing responses
 - Visualizing learned structures
- Applications

The Learned Features are Generic

- Experiment: feature transfer
 - Train network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 - State of the art accuracy already with only 6 training images

Transfer Learning with CNNs

1. Train on ImageNet
2. If small dataset: fix all weights (treat CNN as fixed feature extractor), retrain only the classifier

Other Tasks: Detection

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features regions
4. Classify

- Results on PASCAL VOC Detection benchmark
 - Pre-CNN state of the art: 35.1% mAP
 - 33.4% mAP DPM
 - 53.7% mAP

Transfer Learning with CNNs

1. Train on ImageNet
3. If you have medium sized dataset, "finetune" instead: use the old weights as initialization, train the full network or only some of the higher layers.

Retrain bigger portion of the network
Most Recent Version: Faster R-CNN

- One network, four losses
 - Remove dependence on external region proposal algorithm.
 - Instead, infer region proposals from same CNN.
 - Feature sharing
 - Joint training
 \implies Object detection in a single pass becomes possible.
 \implies mAP improved to >70%.

Faster R-CNN (based on ResNets)

Object Detection Performance

B. Leibe

PASCAL VOC Object Detection Performance

Most Recent Version: Mask R-CNN

Mask R-CNN Results
• Detection + Instance segmentation
• Detection + Pose estimation

YOLO / SSD
• Idea: Directly go from image to detection scores
• Within each grid cell
 • Start from a set of anchor boxes
 • Regress from each of the B anchor boxes to a final box
 • Predict scores for each of C classes (including background)

YOLO-v3 Results

Semantic Image Segmentation
• Perform pixel-wise prediction task
 • Usually done using Fully Convolutional Networks (FCNs)
 • All operations formulated as convolutions
 • Advantage: can process arbitrarily sized images

CNNs vs. FCNs
• CNN
• FCN
• Intuition
 • Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class

Semantic Image Segmentation
• Encoder-Decoder Architecture
 • Problem: FCN output has low resolution
 • Solution: perform upsampling to get back to desired resolution
 • Use skip connections to preserve higher-resolution information
Semantic Segmentation

- Current state-of-the-art
 - Based on an extension of ResNets

Other Tasks: Face Verification

References and Further Reading

- ResNets

- Other Tasks: Face Verification
 - Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014

Commercial Recognition Services

- E.g., clarifai

Try it out with your own media

References and Further Reading

- LeNet

- AlexNet

- VGGNet
 - K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

- GoogLeNet

References: Computer Vision Tasks

- Object Detection
References: Computer Vision Tasks

- Semantic Segmentation