Machine Learning — Lecture 13

Convolutional Neural Networks

10.12.2018

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

(00)
S
| S
(O]
e
=
(@)]
=
c
| S
©
()
-1
(O]
=
e
(@)
©
=

leibe@vision.rwth-aachen.de




Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks | Moty Conmiatrs Stsaming
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Topics of This Lecture

* Recap: Tricks of the Trade

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers

* CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GoogLeNet

B. Leibe
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Recap: Reducing the Learning Rate

* Final improvement step after convergence is reached
A

> Reduce learning rate by a
factor of 10.

> Continue training for a few
epochs.

> Do this 1-3 times, then stop
training.

 Effect

Training error

Reduced
learning rate

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower/impossible after that.

Slide adapted from Geoff Hinton

B. Leibe
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Recap: Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P
polloh loah o
S b el

* During testing
> When cropping was used
during training, need to

% again apply crops to get ., s s : _ e

| e VNN R

= . Beneficial to also apply e L o

| e, RN E Y

g - Applying several ColorPCA - e | .

© variations can bring another Augmented training data

S ~1% improvement, but at a (from one original image)

= significantly increased runtime. .
B. Leibe

Image source: Lucas Beyer



Recap: Normalizing the Inputs

* Convergence is fastest if

> The mean of each input variable
over the training set is zero.

» The inputs are scaled such that P e
. KL-
all have the same covariance. Expansion

> Input variables are uncorrelated
If possible.

Mean
Cancellation

Covariance
Equalization

* Advisable normalization steps (for MLPs only, not for CNNSs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

> If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

_ 6
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)




Recap: Commonly Used Nonlinearities

UNIVERSITY
* Sigmoid /
gla) = o(a) |

1
1+exp{—a}

* Hyperbolic tangent
g(a) = tanh(a)
= 20(2a) — 1

* Softmax
eXP{—az‘}

ga) = S exp{—a,}
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RWNTH
Recap: Commonly Used Nonllnearltles (2)

* Rectified linear unit (ReLU)
g(a) = max{0, a}

* Leaky RelLU L_
g(a) = max{fa,a} B €1[0.01,0.3] |
> Avoids stuck-at-zero units

> Weaker offset bias :

-2

2_

* ELU

(@) = a, a=0 .
gla) =1 ea _ 1, a<0

> No offset bias anymore

> BUT: need to store activations

B. Leibe 5 2 1 0 1 2
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Recap: Glorot Initialization  [Glorot & Bengio, “10]

 Variance of neuron activations

>

Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

We want the variance of the input and output of a unit to be the
same, therefore n Var(W,) should be 1. This means

1-':r-u':'l_I'(Ir:i":r.i-}I — 1 — 1

Or for the backpropagated gradient
1

Mot

Var(W;) =

As a compromise, Glorot & Bengio propose to use
2

Var(W) =
E'-I'[ ] MNin 7 Mout

— Randomly sample the weights with this variance. That's it.

B. Leibe
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RWTH
Recap: He Initialization [He et al., “15]

 Extension of Glorot Initialization to ReLU units
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

s |

I, a>0
0, else

e Same basic idea: Output should have the input variance

> However, the Glorot derivation was based on tanh units, linearity

assumption around zero does not hold for ReLU.
> He et al. made the derivations, proposed to use instead
Var(W) = ——

Ttin

B. Leibe
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Recap: Batch Normalization [loffe & Szegedy '14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

> Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

 Effect

> Much improved convergence (but parameter values are important!)
> Widely used in practice
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Recap: Dropout [Srivastava, Hinton ’12]

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers
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RWTHAACHEN
UNIVERSITY

Neural Networks for Computer Vision

* How should we approach vision problems?

> Face Y/N?

* Architectural considerations

> Inputis 2D

> No pre-segmentation
> Vision is hierarchical
> Vision is difficult

= 2D layers of units

= Need robustness to misalignments
= Hierarchical multi-layered structure
= Network should be deep

_ 14
B. Leibe



Why Hierarchical Multi-Layered Models?

* Motivation 1: Visual scenes are hierarchically organized
Y1 Y2 Yk

Ob/j\ect Fa}\ce
Objec/t\ parts Eyes, r/l\ose,
Primitive features Oriented edges
Input Tmage Face Tmage
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Slide adapted from Richard Turner B. Leibe
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Why Hierarchical Multi-Layered Models?

* Motivation 2: Biological vision is hierarchical, too

Object Face Inferotemporal
A A cortex
Object parts Eyes, nose, ... V4: different
M A textures
Primitive features Oriented edges V1:simple and
T T complex cells
' - Photoreceptors,
Input image Face image _
retina
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Slide adapted from Richard Turner B. Leibe



Hubel/Wiesel Architecture

* D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

> Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel featural hierarchy
topographical mapping .
hy[:ner—t:nmple:{ @ high level
cells
complex cells Cz) mid level
simple cells
= ow level
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Slide credit: Svetlana Lazebnik, Rob Fergus B. Leibe



RWTH
Why Hierarchical Multi-Layered Models?

* Motivation 3: Shallow architectures are inefficient at
representing complex functions

o

B

£

=
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=

®

9 An MLP with 1 hidden layer However, if the function is deep,
2 can implement any function a very large hidden layer may
;cg (universal approximator) be required.

19

Slide adapted from Richard Turner B. Leibe



RWTH
What's Wrong With Standard Neural Networks?

* Complexity analysis

> How many parameters does D
this network have?
0] =3D* + D :
D
> For asmall 32x32 image
0] = 3-32* +32% ~ 3. 10°
D2
* Consequences
. Hard to train D?

> Need to initialize carefully

> Convolutional nets reduce the
number of parameters!
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Slide adapted from Richard Turner B. Leibe



RWTHAACHEN
UNIVERSITY

Convolutional Neural Networks (CNN, ConvNet)

C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
32x32 S2: f. maps C5:layer pg. layer OUTPUT
120 ' 10

Gt |T_ r"r 84
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Convolutional Networks: Intuition

* Fully connected network

> E.g. 1000%x1000 image
1M hidden units

— 1T parameters!

* |deas to improve this
> Spatial correlation is local
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



CHEN
. . UNIVERSITY
Convolutional Networks: Intuition

* Locally connected net

> E.g. 1000%x1000 image

1M hidden units
10x10 receptive fields

= 100M parameters!

* |deas to improve this
> Spatial correlation is local
> Want translation invariance
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



RWTHAACHEN
. . UNIVERSITY
Convolutional Networks: Intuition

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels
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Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato



RWTHAACHEN
UNIVERSITY

Convolutional Networks: Intuition

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000%x1000 image

100 filters
10x 10 filter size

= 10k parameters

* Result: Response map
» size: 1000x1000x 100

» Only memory, not params!
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



RWTHAACHEN
. UNIVERSITY
Important Conceptual Shift

 Before

output layer
Input
layer hidden layer

B. Leibe

Slide credit: FeiFei Li, Andrej Karpathy

* Now:
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Convolution Layers

Example
Hidden neuron Image: 32x32x3 volume

In next layer Before: Full connectivity

>O 32x 32 x 3 weights

Now: Local connectivity

One neuron connects to, e.g.,
5x5x3 region.

32 = Only 5x5x3 shared weights.

32

3

* Note: Connectivity is
> Localinspace (5x5inside 32x32)
> But full in depth (all 3 depth channels)
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Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe
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Convolution Layers

32

depth dimension
-

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32

3

* All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe

28
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Convolution Layers

32

= 00O O(

32

3

Naming convention:

HEIGHT

/ WIDTH
—

DEPTH

* All Neural Net activations arranged in 3 dimensions
> Multiple neurons all looking at the same input region,

stacked in depth

> Form a single [1x1xdepth] depth column in output volume.

Slide credit: FeiFei Li, Andrej Karpathy

B. Leibe

29



RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

00000

0 Example:

0 7x7 input

0 assume 3 x3 connectivity
0 stride 1

— 5x5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.

* In practice, common to zero-pad the border.
> Preserves the size of the input spatially.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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RWTHAACHEN
L. . _ UNIVERSITY
Activation Maps of Convolutional Filters

Activations:

AR NEEEONEIIA AN NS EO AETI SR AR RS
one filter = one depth slice (or activation map) 5x%5 filters

ﬁlll.l
HHIIIH
BN L
.H Each activation map is a depth
slice through the output volume.

Activation maps
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Slide adapted from FeiFei Li, Andrej Karpathy  B- Leibe



CHEN
. . UNIVERSITY
Effect of Multiple Convolution Layers

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe



RWTHAACHEN
UNIVERSITY

Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

42
Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?

* Solution:

> By pooling (e.g., max or avg)

filter responses at different
spatial locations, we gain
robustness to the exact spatial
location of features.
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Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato



Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
31210 3| 4
112 3 | 4
y
* Effect:

> Make the representation smaller without losing too much information
> Achieve robustness to translations
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Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe



Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
31210 3| 4
112 3 | 4
y
* Note

> Pooling happens independently across each slice, preserving the
number of slices.
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Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe
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CNNSs: Implication for Back-Propagation

* Convolutional layers
> Filter weights are shared between locations
= Gradients are added for each filter location.

B. Leibe
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GoogLeNet
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RWTHAACHEN

. UNIVERSITY
CNN Architectures: LeNet (1998)
— C1: feature maps C3:f. maps 16@1 OX1SO4: .

CS:l1ayer fg:layer OUTPUT

S |T_ r"r
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Early convolutional architecture
> 2 Convolutional layers, 2 pooling layers
> Fully-connected NN layers for classification
> Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe



ImageNet Challenge 2012

- magene IMAGENET
> ~14M labeled internet images | .

P L4
> 20k classes ‘ g 2
> Human labels via Amazon & i P

Mechanical Turk

* Challenge (ILSVRC)

> 1.2 million training images
> 1000 classes

. Goal: Predict ground-truth [Deng et al., CVPR'09]
class within top-5 responses

> Currently one of the top benchmarks in Computer Vision

-
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* Similar framework as LeNet, but
> Bigger model (7 hidden layers, 650k units, 60M parameters)
> More data (10° images instead of 103)
> GPU implementation
Better regularization and up-to-date tricks for training (Dropout)

Y

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 50

Image source: A. Krizhevsky, |. Sutskever and G.E. Hinton, NIPS 2012
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http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

RWNTH
ILSVRC 2012 Results

N
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SuperVision Amsterdam

* AlexNet almost halved the error rate

> 16.4% error (top-5) vs. 26.2% for the next best approach
= A revolution in Computer Vision

> Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13

51
B. Leibe
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UNIVERS]

CNN Architectures: VGGNet (2014/15)

Input : Image input
AlexNet ‘ Conv | : Convolutional layer
S Max-pooling layer
5 0 ) ) . 2
Z (lg | |8 5 g 5 n = § Pool ax-pooling lay
= < < = = o
P EC : Fully-connected layer
5 H b b H b b
< e e W = % Softmax | : Softmax layer
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K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale

Image Recognition, ICLR 2015
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http://arxiv.org/pdf/1409.1556
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Main ideas
> Deeper network

> Stacked convolutional
layers with smaller
filters (+ nonlinearity)

> Detalled evaluation
of all components

Results

> Improved ILSVRC top-5
error rate to 6.7%.

RWNTH
CNN Architectures: VGGNet (2014/15)

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool [\, P NN |
FC-4096 viallity uscu
FC-4096
FC-1000
soft-max
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RWNTH
Comparison: AlexNet vs. VGGNet

* Receptive fields in the first layer

> AlexNet: 11x11, stride 4

> Zeiller & Fergus: 7x7, stride 2

> VGGNet: 3x3, stridel
* Why that?

> If you stack a 3x3 on top of another 3x3 layer, you effectively get
a 5x5 receptive field.

> With three 3x 3 layers, the receptive field is already 7 x7.
> But much fewer parameters: 3-3%2 = 27 instead of 72 = 49,

> In addition, non-linearities in-between 3x 3 layers for additional
discriminativity.
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s

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

o

3x3 max pooling

Filter
concatenation

CNN Architectures: GoogLeNet (2014/2015)

ﬂ\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

[}

[

1x1 convolutions

+

Qﬂions 3x3 max pooling
P a—

Previous layer

Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

* Main ideas
> "Inception” module as modular component
> Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014, CVPR*15, 2015.
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http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf

CHEN

. L. UNIVERSITY
GooglLeNet Visualization
i 'EE EE
af af[ s mgﬂaglﬂllgg’%g”’ﬂ
Ry AR R ANE B
A g g g Y a2 ua | [0 I
OO |0d| | 0a riaw ;
‘ Convolution
Inception + copies Pooling
module
Other

Auxiliary classification
outputs for training the
lower layers (deprecated)
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Results on ILSVRC

Method top-1 val. error (%) | top-5 val. error (%) | top-35 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8

VGG (1 net, multi-crop & dense eval.) 24 .4 7.1 7.0

VGG (ILSVRC submission, 7 nets, dense eval.) ‘ 24.7 7.5 ‘ 7.3 |
GoogleNet (Szegedy et al., 2014) (1 net) - 7.9

GooglLeNet (Szegedy et al., 2014) (7 nets) - 6.7

MSRA (He et al., 2014) (11 nets) - - 8.1

MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al.. 2014) (multiple nets) - - 11.7
Clarifar (Russakovsky et al.. 2014) (1 net) - - 12.5

Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8

Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al.. 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al.. 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -

* VGGNet and GooglLeNet perform at similar level

> Comparison: human performance ~5% [Karpathy]

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Newer Developments: Residual Networks
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Newer Developments: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

* Core component
> Skip connections

(00)
» . X
g bypassing each layer
= ~ Better propagation of weight layer
o) .
£ gradients to the deeper F(x) l relu
S layers -
E , . weight layer
> > We'll analyze this
(e . .
= mechanism in more
, H(x)=F(x)+x
‘E% detall later... (x) ()
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ImageNet Performance

28.2

[ 152 layers }

\ 16.4

\ 11 7
} 22 layers | ‘ 19 Ia*,rers

357 I"‘-'-I ‘ 8Iaver5 H 8 layers

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Understanding the ILSVRC Challenge

. :orpc?bglienri!the scope of the I M ‘.b G E " E :

> 1000 categories
> 1.2M training images
> 50k validation images

* This means...

> Speaking out the list of category
names at 1 word/s...

...takes 15mins.

> Watching a slideshow of the validation images at 2s/image...
...takes a full day (24h+).

> Watching a slideshow of the training images at 2s/image...
...takes a full month.
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A4TL s salaTidalic, Rli lillTe, Sllaelddlpl, Aldldablifos, SAldde i FL Al td, Sl Rl Sl Lkl SR LL 2 aRdl e
American alligator, American black bear, American chameleon, American coot,
American egret, American lobster, American Staffordshire terrier, amphibian,
analog clock, anemone fish, Angora, ant, apiary, Appenzeller, apron, Arablan
camel, Arctic fox, armadillo, artichoke, ashcan, assault rifle, Australian terrier,
axolot]l, baboon, backpack, badger, bagel, bakery, balance beam, bald eagle, bal-
loon, ballplayver, ballpoint, banansa, Band Aid, banded gecko, banjo, bannister,
barbell, barber chair, barbershop, barn, barn spider, barometer, barracouta, bar-
rel, barrow, baseball, basenji, basketball, basset, bassinet, bassoon, bath towel,
bathing cap, bathtub, beach wagon, beacon, beagle, beaker, bearskin, beaver,
Bedlington terrier, bee, bee eater, beer bottle, beer glass, bell cote, bell pepper,
Bernese mountain dog, bib, bicycle-built-for-two, bighorn, bikini, binder, binoc-
ulars, birdhouse, bison, bittern, black and gold garden spider, black grouse, black
stork, black swan, black widow, black-and-tan coonhound, black-footed ferret,
Blenheim =spaniel, bloodhound, bluetick, boa constrictor, boathouse, bobsled,
bolete, bolo tie, bonnet, book jacket, bookcase, bookshop, Border collie, Border
terrier, borzol, Boston bull, bottlecap, Bouvier des Flandres, bow, bow tie, box
turtle, boxer, Brabancon griffon, brain coral, brambling, brass, brassiere, break-
water, breastplate, briard, Brittany spaniel, broccoli, broom, brown bear, bub-
ble, bucket, buckeve, buckle, bulbul, bull mastiff, bullet train, bulletproof vest,
bullfrog, burrito, bustard, butcher shop, butternut sguash, cab, cabbage butter-
fly, cairn, caldron, can opener, candle, cannon, canoe, capuchin, car mirror, car
wheel, carbonara, Cardigan, cardigan, cardoon, carocusel, carpenter's kit, car-
ton, cash machine, cassette, cassette player, castle, catamaran, cauliflower, CD
plaver, cello, cellular telephone, centipede, chain, chain mail, chain saw, chain-
link fence, chambered nautilus, cheeseburger, cheetah, Chesapeake Bay retriever,
chest, chickadee, chiffonier, Chihuahua, chime, chimpanzee, china cabinet, chi-
ton, chocolate sauce, chow, Christmas stocking, church, cicada, cinema, cleaver,
cliff, cliff dwelling, cloak, clog, clumber, cock, cocker spaniel, cockroach, cocktail
shaker, coffee mug, coffeepot, coho, coil, collie, colobus, combination lock, comie
book, common iguana, common newt, computer kevboard, conch, confectionery,
consomme, container ship, convertible, coral fungus, coral reef, corkscrew, corn,
cornet, coucal, cougar, cowboy boot, cowboy hat, covote, cradle, crane, crane,
crash helmet, crate, crayfish, crib, cricket, Crock Pot, croguet ball, crossword
puzzle, crutch, cucumber, cuirass, cup, curly-coated retriever, custard apple,
dailsy, dalmatian, dam, damselfly, Dandie Dinmont, desk, desktop computer,
dhole, dial telephone, diamondback, diaper, digital clock, digital watch, dingo,
dining table, dishrag, dishwasher, dizsk brake, Doberman, dock, dogsled, dome,
doormat, dough, dowitcher, dragonfly, drake, drilling platform, drum, drumstick,
dugong, dumbbell, dung beetle, Dungeness crab, Dutch oven, ear, earthstar,
echidna, eel, eft, eggnog, Egyptian cat, electric fan, electric guitar, electric lo-
comotive, electric ray, English foxhound, English setter, English springer, enter-
tainment center, EntleBucher, envelope, Ezskimo dog, espresso, espresso maker,
European fire salamander., European gallinule, face powder, feather boa, fid-
dler crab, fig, file, fire engine, fire screen, fireboat, flagpole, flamingo, flat-
coated retriever, flatworm, flute, fly, folding chair, football helmet, forklift, foun-
tain, fountain pen, four-poster, fox squirrel, freight car, French bulldog, French
horn, French loaf, frilled lizard, frying pan, fur coat, gar, garbage truck, gar-
den spider, garter snake, gas pump, gasmask, gazelle, German shepherd, Ger-
man short-haired pointer, gevser, giant panda, giant schnauzer, gibbon, Gila
monster, go-kart, goblet, golden retriever, goldfinch, goldfish, golf ball, golfcart,
gondola, gong, goose, Gordon setter, gorilla, gown, grand planco, Granny Smith,
grasshopper, Great Dane, great grey owl, Great Pyrenees, great white shark,

NTHAACHEN
UNIVERSITY
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More Finegrained Classes

PASCAL

birds

TR s
cock

cats

dogs
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Image source: O. Russakovsky et al.
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Quirks and Limitations of the Data Set
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* Generated from WordNet ontology
> Some animal categories are overrepresented
> E.g., 120 subcategories of dog breeds

= 6.7% top-5 error looks all the more impressive

(0 0]
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

65

Image source: A. Karpathy

B. Leibe



References and Further Reading

* LeNet

> Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the IEEE
86(11): 2278-2324, 1998.

* AlexNet

> A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification
with Deep Convolutional Neural Networks, NIPS 2012.

* VGGNet

> K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, ICLR 2015

* GoogLeNet

> C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

66

B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

References and Further Reading

* ResNet

> K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.

_ 67
B. Leibe


http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

