Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Topics of This Lecture

- Learning Multi-layer Networks
 - Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Recap: Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function
 \[E(W) = \sum_{i} L(t_i, y(x_i; W)) + \lambda \Omega(W) \]
 - with a loss \(L(\cdot) \) and a regularizer \(\Omega(\cdot) \).
 - E.g., \(L(t_i, y(x_i; W)) = \sum_{i} (y(x_i; W) - t_i)^2 \)
 - \(\Omega(W) = \|W\|_2^2 \)
 - \(L_2 \) regularizer
 - ("weight decay")

- Update each weight \(W_{ij}^{(l)} \) in the direction of the gradient \(\Delta W_{ij}^{(l)} \).

Obtaining the Gradients

- Approach 1: Naive Analytical Differentiation
 - Compute the gradients for each variable analytically.
 - What is the problem when doing this?
Excursion: Chain Rule of Differentiation

- One-dimensional case: Scalar functions
 \[
 \Delta z = \frac{dz}{dy} \Delta y = \frac{dz}{dx} \Delta x = \frac{dz}{dy} \frac{dy}{dx} \Delta x
 \]

- Multi-dimensional case: Total derivative
 \[
 \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} + \ldots = \sum_{i=1}^{k} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
 \]

 \[\Rightarrow\] Need to sum over all paths that lead to the target variable \(x\).

Obtaining the Gradients

- Approach 1: Naive Analytical Differentiation
 - Compute the gradients for each variable analytically.
 - What is the problem when doing this?
 \[\Rightarrow\] With increasing depth, there will be exponentially many paths!
 \[\Rightarrow\] Infeasible to compute this way.

- Approach 2: Numerical Differentiation
 - Given the current state \(W^{(k)}\), we can evaluate \(E(W^{(k)})\).
 - Idea: Make small changes to \(W^{(k)}\) and accept those that improve \(E(W^{(k)})\).
 - Horribly inefficient! Need several forward passes for each weight. Each forward pass is one run over the entire dataset!

- Approach 3: Incremental Analytical Differentiation
 - Idea: Compute the gradients layer by layer.
 - Each layer below builds upon the results of the layer above.
 \[\Rightarrow\] The gradient is propagated backwards through the layers.
 \[\Rightarrow\] Backpropagation algorithm

Backpropagation Algorithm

- Core steps
 1. Convert the discrepancy between each output and its target value into an error derivate.
 \[E = \frac{1}{2} \sum_{j \in \text{output}} (t_j - y_j)^2\]
 \[\frac{\partial E}{\partial y_j} = -(t_j - y_j)\]

 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
 \[\frac{\partial E}{\partial y_j} \rightarrow \frac{\partial E}{\partial w_{ji}}\]

 3. Use error derivatives w.r.t. activities to get error derivatives w.r.t. the incoming weights.
Backpropagation Algorithm

\[\frac{\partial E}{\partial y_j} = \frac{\partial E}{\partial z_j} \frac{\partial z_j}{\partial y_j} \]

Connections:
\[z_j^{(k)} = \sum w_{ij}^{(k)} y_i^{(k-1)} \]
\[y_j^{(k)} = g(z_j^{(k)}) \]

\[\frac{\partial E}{\partial w_{ij}^{(k)}} = \frac{\partial E}{\partial z_j^{(k)}} \frac{\partial z_j^{(k)}}{\partial w_{ij}^{(k)}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} \]

\[\frac{\partial E}{\partial b_j^{(k)}} = \frac{\partial E}{\partial z_j^{(k)}} \frac{\partial z_j}{\partial b_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial z_j} \frac{\partial z_j}{\partial b_j} \]

Efficient propagation scheme
\[y_{(k-1)} = \{ y_j^{(k-1)} \} \]
\[\frac{\partial E}{\partial y_j^{(k-1)}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial z_j} \frac{\partial z_j}{\partial y_j^{(k-1)}} = \frac{\partial E}{\partial z_j} \frac{\partial z_j}{\partial y_j^{(k-1)}} \]

Summary: MLP Backpropagation

- **Forward Pass**
 \[y^{(0)} = x \]
 for \(k = 1, \ldots, l \) do
 \[z^{(k)} = W^{(k)} y^{(k-1)} \]
 \[y^{(k)} = g_k(z^{(k)}) \]
 endfor

 \[y = y^{(l)} \]
 \[E = L(t, y) + \lambda \Omega(W) \]

- **Backward Pass**
 \[h \leftarrow \frac{\partial E}{\partial y} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial h} + \lambda \frac{\partial \Omega}{\partial W} \]
 for \(k = l, l-1, \ldots, 1 \) do
 \[h \leftarrow \frac{\partial E}{\partial W^{(k)}} = h \odot g'(z^{(k)}) \frac{\partial E}{\partial z^{(k)}} + \lambda \frac{\partial \Omega}{\partial W^{(k)}} \]
 \[h \leftarrow \frac{\partial E}{\partial b^{(k)}} = W^{(k) \top} h \]
 endfor

- **Notes**
 - For efficiency, an entire batch of data \(X \) is processed at once.
 - \(\odot \) denotes the element-wise product

Analysis: Backpropagation

- **Backpropagation is the key to make deep NNs tractable**
 - However...
 - **The Backprop algorithm given here is specific to MLPs**
 - It does not work with more complex architectures, e.g. skip connections or recurrent networks!
 - Whenever a new connection function induces a different functional form of the chain rule, you have to derive a new Backprop algorithm for it. \(\Rightarrow \) Tedious...
 - **Let’s analyze Backprop in more detail**
 - This will lead us to a more flexible algorithm formulation
Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Computational Graphs

- We can think of mathematical expressions as graphs
 - E.g., consider the expression
 \[c = (a + b) \times (b + 1) \]
 - We can decompose this into the operations
 \[a + b \quad d = b + 1 \quad e = c \times d \]
 - and visualize this as a computational graph.
- Evaluating partial derivatives \(\frac{\partial c}{\partial X} \) in such a graph
 - General rule: sum over all possible paths from \(Y \) to \(X \)
 and multiply the derivatives on each edge of the path together.

Factoring Paths

- Problem: Combinatorial explosion
 - Example:
 \[X \xrightarrow{a} Y \xrightarrow{\beta} Z \]
 \[\frac{\partial Z}{\partial X} = \alpha \delta + \alpha \zeta + \beta \delta + \beta \zeta + \gamma \delta + \gamma \zeta \]
 Instead of naively summing over paths, it’s better to factor them
 \[\frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma) \times (\delta + \epsilon + \zeta) \]

Why Do We Care?

- Let’s consider the example again
 - Using forward-mode differentiation from \(b \) up...
 - Runtime: \(O(\#\text{edges}) \)
 - Result: derivative of every node with respect to \(b \).

 \[\frac{\partial c}{\partial b} = b + 1 \]

Efficient Factored Algorithms

- Efficient algorithms for computing the sum
 - Instead of summing over all of the paths explicitly, compute the sum more efficiently by merging paths back together at every node.

Why Do We Care?

- Let’s consider the example again
 - Using reverse-mode differentiation from \(c \) down...
 - Runtime: \(O(\#\text{edges}) \)
 - Result: derivative of \(c \) with respect to every node.

 \[\frac{\partial c}{\partial b} = b + 1 \]
Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Mini-batches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Obtaining the Gradients

- Approach 4: Automatic Differentiation
 - Convert the network into a computational graph.
 - Each new layer/module just needs to specify how it affects the forward and backward passes.
 - Apply reverse-mode differentiation.
 - Very general algorithm, used in today’s Deep Learning packages

Modular Implementation

- Solution in many current Deep Learning libraries
 - Provide a limited form of automatic differentiation
 - Restricted to “programs” composed of “modules” with a predefined set of operations.
- Each module is defined by two main functions
 1. Computing the outputs \(y \) of the module given its inputs \(x \)
 \[y = \text{module}.\text{fp}rop(x) \]
 where \(x \), \(y \), and intermediate results are stored in the module.
 2. Computing the gradient \(\frac{\partial E}{\partial x} \) of a scalar cost w.r.t. the inputs \(x \) given the gradient \(\frac{\partial E}{\partial y} \) w.r.t. the outputs \(y \)
 \[\frac{\partial E}{\partial x} = \text{module}.\text{bp}rop \left(\frac{\partial E}{\partial y} \right) \]

Implementing Softmax Correctly

- Softmax output
 - De-facto standard for multi-class outputs
 \[E(w) = - \sum_{n=1}^{N} \sum_{k=1}^{K} \left(I(t_n = k) \ln \frac{\exp(w_k^T x)}{\sum_{j=1}^{K} \exp(w_j^T x)} \right) \]
- Practical issue
 - Exponentials get very big and can have vastly different magnitudes.
 - Trick 1: Do not compute first softmax, then log, but instead directly evaluate log-exp in the nominator and log-sum-exp in the denominator.
 - Trick 2: Softmax has the property that for a fixed vector \(b \)
 \[\text{softmax}(a + b) = \text{softmax}(a) \]
 \(\Rightarrow \) Subtract the largest weight vector \(w_j \) from the others.
Gradient Descent

• Two main steps
 1. Computing the gradients for each weight
 2. Adjusting the weights in the direction of the gradient

• Recall: Basic update equation
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]

• Main questions
 ➢ On what data do we want to apply this?
 ➢ How should we choose the step size \(\eta \) (the learning rate)?
 ➢ In which direction should we update the weights?

Stochastic vs. Batch Learning

• Batch learning
 ➢ Process the full dataset at once to compute the gradient.

• Stochastic learning
 ➢ Choose a single example from the training set.
 ➢ Compute the gradient only based on this example
 ➢ This estimate will generally be noisy, which has some advantages.

• Batch learning advantages
 ➢ Conditions of convergence are well understood.
 ➢ Many acceleration techniques (e.g., conjugate gradients) only operate in batch learning.
 ➢ Theoretical analysis of the weight dynamics and convergence rates are simpler.

• Stochastic learning advantages
 ➢ Usually much faster than batch learning.
 ➢ Often results in better solutions.
 ➢ Can be used for tracking changes.

• Middle ground: Minibatches

Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent
 ➢ Consider a simple 1D example first
 \[W^{(r+1)} = W^{(r)} - \frac{\partial E(W)}{\partial W} \]
 ➢ What is the optimal learning rate \(\eta_{opt} \)?

 ➢ If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \[\eta_{opt} = \left(\frac{\partial^2 E(W)}{\partial W^2} \right)^{-1} \]
 ➢ What happens if we exceed this learning rate?
Choosing the Right Learning Rate

- Behavior for different learning rates

Learning Rate vs. Training Error

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Batch vs. Stochastic Learning

- Batch Learning
 - Simplest case: steepest decent on the error surface.
 - Updates perpendicular to contour lines
- Stochastic Learning
 - Simplest case: zig-zag around the direction of steepest descent.
 - Updates perpendicular to constraints from training examples.

Why Learning Can Be Slow

- If the inputs are correlated
 - The ellipse will be very elongated.
 - The direction of steepest descent is almost perpendicular to the direction towards the minimum!

The Momentum Method

- Idea
 - Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.
- Intuition
 - Example: Ball rolling on the error surface
 - It starts off by following the error surface, but once it has accumulated momentum, it no longer does steepest descent.
- Effect
 - Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
 - Build up speed in directions with a gentle but consistent gradient.
The Momentum Method: Implementation

- Change in the update equations
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.
 \[
 v(t) = \alpha v(t-1) - \frac{\partial E}{\partial w}(t)
 \]
 - Set the weight change to the current velocity
 \[
 \Delta w = v(t) = \alpha v(t-1) - \frac{\partial E}{\partial w}(t)
 \]

- Behavior
 - If the error surface is a tilted plane, the ball reaches a terminal velocity
 \[
 v(\infty) = \frac{1}{1 - \alpha} \left(- \frac{\partial E}{\partial w} \right)
 \]
 - If the momentum α is close to 1, this is much faster than simple gradient descent.
 - At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., $\alpha = 0.5$).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha = 0.90$ or even $\alpha = 0.99$).
 - This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.

- Solution
 - Use a global learning rate, multiplied by a local gain per weight (determined empirically).

Better Adaptation: RMSProp

- Motivation
 - The magnitude of the gradient can be very different for different weights and can change during learning.
 - This makes it hard to choose a single global learning rate.
 - For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

- Idea of RMSProp
 - Divide the gradient by a running average of its recent magnitude
 \[
 \text{MeanSq}(w_{ij}, t) = 0.9 \text{MeanSq}(w_{ij}, t-1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t) \right)^2
 \]
 - Divide the gradient by $\sqrt{\text{MeanSq}(w_{ij}, t)}$.

Other Optimizers

- AdaGrad [Duchi ’10]
- AdaDelta [Zeiler ’12]
- Adam [Ba & Kingma ’14]

- Notes
 - All of those methods have the goal to make the optimization less sensitive to parameter settings.
 - Adam is currently becoming the quasi-standard
Behavior in a Long Valley

Behavior around a Saddle Point

Visualization of Convergence Behavior

Trick: Patience

Reducing the Learning Rate

Summary

• Deep multi-layer networks are very powerful.
• But training them is hard!
 • Complex, non-convex learning problem
 • Local optimization with stochastic gradient descent
• Main issue: getting good gradient updates for the lower layers of the network
 • Many seemingly small details matter!
 • Weight initialization, normalization, data augmentation, choice of nonlinearities, choice of learning rate, choice of optimizer,…
• In the following, we will take a look at the most important factors (to be continued in the next lecture…)

- Final improvement step after convergence is reached
 • Reduce learning rate by a factor of 10.
 • Continue training for a few epochs.
 • Do this 1-3 times, then stop training.

- Effect
 • Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

- Be careful: Do not turn down the learning rate too soon!
 • Further progress will be much slower/impossible after that.

- Saddle points dominate in high-dimensional spaces!

- Learning often doesn’t get stuck, you just may have to wait…

- Reduced learning rate

- Training error

- Epoch

- Reduced learning rate

- Norm of the gradients
Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Shuffling the Examples

- Ideas
 - Networks learn fastest from the most unexpected sample.
 - It is advisable to choose a sample at each iteration that is most unfamiliar to the system.
 - E.g. a sample from a different class than the previous one.
 - This means, do not present all samples of class A, then all of class B.
 - A large relative error indicates that an input has not been learned by the network yet, so it contains a lot of information.
 - It can make sense to present such inputs more frequently.
 - But: be careful, this can be disastrous when the data are outliers.
- Practical advice
 - When working with stochastic gradient descent or minibatches, make use of shuffling.

Data Augmentation

- Idea
 - Augment original data with synthetic variations to reduce overfitting
- Example augmentations for images
 - Cropping
 - Zooming
 - Flipping
 - Color PCA

- Effect
 - Much larger training set
 - Robustness against expected variations
- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Practical Advice

- Motivation
 - Consider the Gradient Descent update steps
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]
 - From backpropagation, we know that
 \[\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial z_j} \frac{\partial z_j}{\partial w_{kj}} \]
 - When all of the components of the input vector \(y \) are positive, all of the updates of weights that feed into a node will be of the same sign.
 - Weights can only all increase or decrease together.
 - Slow convergence
 - When working with stochastic gradient descent or minibatches, make use of shuffling.
Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loève expansion).

References and Further Reading

- More information on many practical tricks can be found in Chapter 1 of the book

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller