Machine Learning – Lecture 7

Linear Support Vector Machines

08.11.2018

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Classification Approaches
 ➢ Linear Discriminants
 ➢ Support Vector Machines
 ➢ Ensemble Methods & Boosting
 ➢ Randomized Trees, Forests & Ferns

• Deep Learning
 ➢ Foundations
 ➢ Convolutional Neural Networks
 ➢ Recurrent Neural Networks
Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \iff w^T x + w_0 = \text{const}. \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret the \(y(x) \) as posterior probabilities.

\[g(a) \equiv \frac{1}{1 + \exp(-a)} \]
Recap: Extension to Nonlinear Basis Fcts.

- **Generalization**
 - Transform vector \mathbf{x} with M nonlinear basis functions $\phi_j(\mathbf{x})$:
 \[
 y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}
 \]

- **Advantages**
 - Transformation allows non-linear decision boundaries.
 - By choosing the right ϕ_j, every continuous function can (in principle) be approximated with arbitrary accuracy.

- **Disadvantage**
 - The error function can in general no longer be minimized in closed form.
 - \Rightarrow Minimization with Gradient Descent
Recap: Basis Functions

- Generally, we consider models of the following form

\[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = w^T \phi(x) \]

- where \(\phi_j(x) \) are known as basis functions.
- In the simplest case, we use linear basis functions: \(\phi_d(x) = x_d \).

- Other popular basis functions

![Polynomial](image1)

![Gaussian](image2)

![Sigmoid](image3)
Recap: Iterative Methods for Estimation

- **Gradient Descent (1st order)**
 \[w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E(w) \bigg|_{w^{(\tau)}} \]
 - Simple and general
 - Relatively slow to converge, has problems with some functions

- **Newton-Raphson (2nd order)**
 \[w^{(\tau+1)} = w^{(\tau)} - \eta \mathbf{H}^{-1} \nabla E(w) \bigg|_{w^{(\tau)}} \]
 where \(\mathbf{H} = \nabla \nabla E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.
 - Local quadratic approximation to the target function
 - Faster convergence
Recap: Gradient Descent

• Iterative minimization
 ➢ Start with an initial guess for the parameter values $w_{kj}^{(0)}$.
 ➢ Move towards a (local) minimum by following the gradient.

• Basic strategies
 ➢ “Batch learning”
 \[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(w)}{\partial w_{kj}} \right|_{w^{(\tau)}} \]
 ➢ “Sequential updating”
 \[w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(w)}{\partial w_{kj}} \right|_{w^{(\tau)}} \]

where
\[E(w) = \sum_{n=1}^{N} E_n(w) \]
Recap: Gradient Descent

- Example: Quadratic error function

\[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2 \]

- Sequential updating leads to **delta rule** (=LMS rule)

\[
w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n)
\]

\[
= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(x_n)
\]

where

\[
\delta_{kn} = y_k(x_n; w) - t_{kn}
\]

⇒ Simply feed back the input data point, weighted by the classification error.
Recap: Gradient Descent

- Cases with differentiable, non-linear activation function

\[y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{ki} \phi_j(x_n) \right) \]

- Gradient descent (again with quadratic error function)

\[
\begin{align*}
\frac{\partial E_n(w)}{\partial w_{kj}} &= \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \\

w_{kj}^{(\tau+1)} &= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(x_n) \\

\delta_{kn} &= \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})
\end{align*}
\]

Slide adapted from Bernt Schiele
Recap: Probabilistic Discriminative Models

• Consider models of the form

\[p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \]

with \[p(C_2|\phi) = 1 - p(C_1|\phi) \]

• This model is called **logistic regression**.

• Properties

 ➢ Probabilistic interpretation
 ➢ But discriminative method: only focus on decision hyperplane
 ➢ Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling \(p(\phi|C_k) \) and \(p(C_k) \).
Recap: Logistic Regression

• Let’s consider a data set \{\phi_n, t_n\} with \(n = 1, \ldots, N\), where \(\phi_n = \phi(x_n)\) and \(t_n \in \{0, 1\}\), \(t = (t_1, \ldots, t_N)^T\).

• With \(y_n = p(C_1|\phi_n)\), we can write the likelihood as

\[
p(t|w) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1-t_n}
\]

• Define the error function as the negative log-likelihood

\[
E(w) = - \ln p(t|w)
\]

\[
= - \sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}
\]

➢ This is the so-called cross-entropy error function.
Recap: Iteratively Reweighted Least Squares

- Update equations

\[
\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - (\Phi^T \mathbf{R} \Phi)^{-1} \Phi^T (\mathbf{y} - \mathbf{t})
\]

\[
= (\Phi^T \mathbf{R} \Phi)^{-1} \left\{ \Phi^T \mathbf{R} \mathbf{w}^{(\tau)} - \Phi^T (\mathbf{y} - \mathbf{t}) \right\}
\]

\[
= (\Phi^T \mathbf{R} \Phi)^{-1} \Phi^T \mathbf{R} \mathbf{z}
\]

with \(\mathbf{z} = \Phi \mathbf{w}^{(\tau)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}) \)

- Very similar form to pseudo-inverse (normal equations)
 - But now with non-constant weighing matrix \(\mathbf{R} \) (depends on \(\mathbf{w} \)).
 - Need to apply normal equations iteratively.

\(\Rightarrow \) Iteratively Reweighted Least-Squares (IRLS)
Topics of This Lecture

• **Softmax Regression**
 - Multi-class generalization
 - Gradient descent solution

• **Note on Error Functions**
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

• **Linear Support Vector Machines**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
Softmax Regression

• Multi-class generalization of logistic regression
 - In logistic regression, we assumed binary labels \(t_n \in \{0, 1\} \).
 - Softmax generalizes this to \(K \) values in 1-of-\(K \) notation.

\[
y(x; w) = \begin{bmatrix}
P(y = 1|x; w) \\
P(y = 2|x; w) \\
\vdots \\
P(y = K|x; w)
\end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(w_j^\top x)} \begin{bmatrix}
\exp(w_1^\top x) \\
\exp(w_2^\top x) \\
\vdots \\
\exp(w_K^\top x)
\end{bmatrix}
\]

 - This uses the softmax function

\[
\frac{\exp(a_k)}{\sum_j \exp(a_j)}
\]

 - Note: the resulting distribution is normalized.
Softmax Regression Cost Function

- Logistic regression
 - Alternative way of writing the cost function with indicator function $\mathbb{I}(\cdot)$

$$E(w) = - \sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}$$

$$= - \sum_{n=1}^{N} \sum_{k=0}^{1} \mathbb{I}(t_n = k) \ln P(y_n = k | x_n; w)$$

- Softmax regression
 - Generalization to K classes using indicator functions.

$$E(w) = - \sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ \mathbb{I}(t_n = k) \ln \frac{\exp(w_k^T x)}{\sum_{j=1}^{K} \exp(w_j^T x)} \right\}$$
Optimization

• Again, no closed-form solution is available
 - Resort again to Gradient Descent
 - Gradient

\[\nabla_{w_k} E(w) = - \sum_{n=1}^{N} \left[\mathbb{I}(t_n = k) \ln P(y_n = k \mid x_n; w) \right] \]

• Note
 - \(\nabla_{w_k} E(w) \) is itself a vector of partial derivatives for the different components of \(w_k \).
 - We can now plug this into a standard optimization package.
Topics of This Lecture

• Softmax Regression
 - Multi-class generalization
 - Gradient descent solution

• Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

• Linear Support Vector Machines
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
Note on Error Functions

\[t_n \in \{-1, 1\} \]

- Ideal misclassification error function (black)
 - This is what we want to approximate (error = \#misclassifications)
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 \[z_n = t_n y(x_n) \]
 \[E(z_n) \]

- Not differentiable!
Note on Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points
 - Generally does not lead to good classifiers.

$z_n = t_n y(x_n)$

Set $t_n \in \{-1, 1\}$

Squared error

Ideal misclassification error

Sensitive to outliers!
Comparing Error Functions (Loss Functions)

\(t_n \in \{-1, 1\} \)

Robust to outliers!

- **Cross-Entropy Error**
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly.
 - But no closed-form solution, requires iterative estimation.

Image source: Bishop, 2006
Overview: Error Functions

• Ideal Misclassification Error
 - This is what we would like to optimize.
 - But cannot compute gradients here.

• Quadratic Error
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

• Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

⇒ Looking at the error function this way gives us an analysis tool to compare the properties of classification approaches.
Topics of This Lecture

- **Softmax Regression**
 - Multi-class generalization
 - Gradient descent solution

- **Note on Error Functions**
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

- **Linear Support Vector Machines**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion
Generalization and Overfitting

- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.

⇒ Overfitting to the training set!

Image source: B. Schiele
Example: Linearly Separable Data

- Overfitting is often a problem with linearly separable data
 - Which of the many possible decision boundaries is correct?
 - All of them have zero error on the training set…
 - However, they will most likely result in different predictions on novel test data.
 ⇒ Different generalization performance

- How to select the classifier with the best generalization performance?
Revisiting Our Previous Example…

• How to select the classifier with the best generalization performance?
 – Intuitively, we would like to select the classifier which leaves maximal “safety room” for future data points.
 – This can be obtained by maximizing the margin between positive and negative data points.
 – It can be shown that the larger the margin, the lower the corresponding classifier’s VC dimension (capacity for overfitting).

• The SVM takes up this idea
 – It searches for the classifier with maximum margin.
 – Formulation as a convex optimization problem
 ⇒ Possible to find the globally optimal solution!
Support Vector Machine (SVM)

- Let’s first consider linearly separable data
 - \(N \) training data points \(\{(x_i, y_i)\}_{i=1}^{N} \), \(x_i \in \mathbb{R}^d \)
 - Target values \(t_i \in \{-1, 1\} \)
 - Hyperplane separating the data

\[
\begin{align*}
\sum_{i=1}^{N} f(x_i; y_i) = 0
\end{align*}
\]

\[
\begin{align*}
w^T x + b = 0
\end{align*}
\]
Support Vector Machine (SVM)

- Margin of the hyperplane: $d_- + d_+$
 - d_+: distance to nearest pos. training example
 - d_-: distance to nearest neg. training example

- We can always choose w, b such that $d_- = d_+ = \frac{1}{\|w\|}$
Support Vector Machine (SVM)

• Since the data is linearly separable, there exists a hyperplane with

\[\mathbf{w}^T \mathbf{x}_n + b \geq +1 \quad \text{for} \quad t_n = +1 \]
\[\mathbf{w}^T \mathbf{x}_n + b \cdot -1 \quad \text{for} \quad t_n = -1 \]

• Combined in one equation, this can be written as

\[t_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n \]

⇒ Canonical representation of the decision hyperplane.
 - The equation will hold exactly for the points on the margin

\[t_n (\mathbf{w}^T \mathbf{x}_n + b) = 1 \]
 - By definition, there will always be at least one such point.

Slide adapted from Bernt Schiele
Support Vector Machine (SVM)

• We can choose \(w \) such that
 \[
 w^T x_n + b = +1 \quad \text{for one} \quad t_n = +1 \\
 w^T x_n + b = -1 \quad \text{for one} \quad t_n = -1
 \]

• The distance between those two hyperplanes is then the margin
 \[
 d_- = d_+ = \frac{1}{\|w\|} \\
 d_- + d_+ = \frac{2}{\|w\|}
 \]

\[\Rightarrow\] We can find the hyperplane with maximal margin by minimizing \(\|w\|^2 \)
Support Vector Machine (SVM)

- Optimization problem
 - Find the hyperplane satisfying
 \[\arg \min_{w,b} \frac{1}{2} ||w||^2 \]
 under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 - Quadratic programming problem with linear constraints.
 - Can be formulated using Lagrange multipliers.

- Who is already familiar with Lagrange multipliers?
 - Let’s look at a real-life example…
Recap: Lagrange Multipliers

- **Problem**
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

$$f(x) = 0 \quad f(x) < 0$$

$$f(x) > 0$$

- We want to maximize ∇K
- But we can only move parallel to the fence, i.e. along

$$\nabla_{\parallel} K = \nabla K + \lambda \nabla f$$

with $\lambda \neq 0$.
Recap: Lagrange Multipliers

- **Problem**
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

$$f(x) = 0, \quad f(x) < 0$$

⇒ Optimize

$$\max_{x,\lambda} L(x, \lambda) = K(x) + \lambda f(x)$$

$$\frac{\partial L}{\partial x} = \nabla_{\parallel} K \not= 0$$

$$\frac{\partial L}{\partial \lambda} = f(x) \not= 0$$
Recap: Lagrange Multipliers

- **Problem**
 - Now let’s look at constraints of the form \(f(x) \geq 0 \).
 - Example: There might be a hill from which we can see better…
 - Optimize \(\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x) \)

- **Two cases**
 - Solution lies on boundary
 \(\Rightarrow f(x) = 0 \) for some \(\lambda > 0 \)
 - Solution lies inside \(f(x) > 0 \)
 \(\Rightarrow \) Constraint inactive: \(\lambda = 0 \)
 - In both cases
 \(\Rightarrow \lambda f(x) = 0 \)
Recap: Lagrange Multipliers

- **Problem**
 - Now let’s look at constraints of the form $f(x) \geq 0$.
 - Example: There might be a hill from which we can see better…
 - Optimize $\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$

- **Two cases**
 - Solution lies on boundary
 $\Rightarrow f(x) = 0$ for some $\lambda > 0$
 - Solution lies inside $f(x) > 0$
 \Rightarrow Constraint inactive: $\lambda = 0$
 - In both cases
 $\Rightarrow \lambda f(x) = 0$

Karush-Kuhn-Tucker (KKT) conditions:

- $\lambda \geq 0$
- $f(x) \geq 0$
- $\lambda f(x) = 0$
SVM – Lagrangian Formulation

• Find hyperplane minimizing $\|w\|^2$ under the constraints
 $$t_n(w^T x_n + b) - 1 \geq 0 \quad \forall n$$

• Lagrangian formulation
 - Introduce positive Lagrange multipliers: $a_n \geq 0 \quad \forall n$
 - Minimize Lagrangian ("primal form")
 $$L(w, b, a) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(w^T x_n + b) - 1 \right\}$$
 - I.e., find w, b, and a such that
 $$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0 \quad \frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{n=1}^{N} a_n t_n x_n$$
SVM – Lagrangian Formulation

• Lagrangian primal form

\[
L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(w^T x_n + b) - 1 \right\}
\]

\[
= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n y(x_n) - 1 \right\}
\]

• The solution of \(L_p \) needs to fulfill the KKT conditions

 ➢ Necessary and sufficient conditions

\[
a_n \geq 0
\]

\[
t_n y(x_n) - 1 \geq 0
\]

\[
a_n \left\{ t_n y(x_n) - 1 \right\} = 0
\]

KKT:

\[
\lambda \geq 0
\]

\[
f(x) \geq 0
\]

\[
\lambda f(x) = 0
\]
SVM – Solution (Part 1)

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Because of the KKT conditions, the following must also hold
 \[a_n (t_n (w^T x_n + b) - 1) = 0 \]

 This implies that \(a_n > 0 \) only for training data points for which
 \[(t_n (w^T x_n + b) - 1) = 0 \]

 \(\Rightarrow \) Only some of the data points actually influence the decision boundary!

KKT: \(\lambda f(x) = 0 \)
SVM – Support Vectors

• The training points for which \(a_n > 0 \) are called “support vectors”.

• Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.

\[\Rightarrow \text{Robustness to “too correct” points!} \]
SVM – Solution (Part 2)

• Solution for the hyperplane
 - To define the decision boundary, we still need to know b.
 - Observation: any support vector x_n satisfies

 $$t_n y(x_n) = t_n \left(\sum_{m \in S} a_m t_m x_m^T x_n + b \right) = 1$$

 - Using $t_n^2 = 1$ we can derive: $b = t_n - \sum_{m \in S} a_m t_m x_m^T x_n$
 - In practice, it is more robust to average over all support vectors:

 $$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_m^T x_n \right)$$

KKT:

$$f(x) \geq 0$$
SVM – Discussion (Part 1)

• Linear SVM
 - Linear classifier
 - SVMs have a “guaranteed” generalization capability.
 - Formulation as convex optimization problem.
 ⇒ Globally optimal solution!

• Primal form formulation
 - Solution to quadratic prog. problem in \(M \) variables is in \(\mathcal{O}(M^3) \).
 - Here: \(D \) variables ⇒ \(\mathcal{O}(D^3) \)
 - Problem: scaling with high-dim. data (“curse of dimensionality”)
SVM – Dual Formulation

• Improving the scaling behavior: rewrite L_p in a dual form

$$L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \{t_n(w^T x_n + b) - 1\}$$

$$= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n - b \sum_{n=1}^{N} a_n t_n + \sum_{n=1}^{N} a_n$$

- Using the constraint $\sum_{n=1}^{N} a_n t_n = 0$ we obtain

$$\frac{\partial L_p}{\partial b} = 0$$

$$L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n$$
SVM – Dual Formulation

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n \]

- Using the constraint \(w = \sum_{n=1}^{N} a_n t_n x_n \) we obtain

\[\frac{\partial L_p}{\partial w} = 0 \]

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n \sum_{m=1}^{N} a_m t_m x_m^T x_n + \sum_{n=1}^{N} a_n \]

\[= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]
SVM – Dual Formulation

\[L = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]

- Applying \(\frac{1}{2} \|w\|^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \)

\[\frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

- Inserting this, we get the Wolfe dual

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]
SVM – Dual Formulation

• Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

- \[a_n \geq 0 \quad \forall n \]
- \[\sum_{n=1}^{N} a_n t_n = 0 \]

- The hyperplane is given by the \(N_S \) support vectors:

\[w = \sum_{n=1}^{N_S} a_n t_n x_n \]
SVM – Discussion (Part 2)

• Dual form formulation
 - In going to the dual, we now have a problem in N variables (a_n).
 - Isn’t this worse??? We penalize large training sets!

• However…
 1. SVMs have sparse solutions: $a_n \neq 0$ only for support vectors!
 ⇒ This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between $O(N)$ and $O(N^2)$.
 2. We have avoided the dependency on the dimensionality.
 ⇒ This makes it possible to work with infinite-dimensional feature spaces by using suitable basis functions $\phi(x)$.
 ⇒ We’ll see that in the next lecture…
References and Further Reading

• More information on SVMs can be found in Chapter 7.1 of Bishop’s book.

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

• Additional information about Statistical Learning Theory and a more in-depth introduction to SVMs are available in the following tutorial: