Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.
- Linear discriminant functions
 \[y(x) = w^T x + w_0 \]
 - \(w, w_0 \) define a hyperplane in \(\mathbb{R}^D \).
 - If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 \[
 E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2
 \]
 \[
 E_D(W) = \frac{1}{2} \text{Tr} \left\{ (XW - T)(XW - T)^T \right\}
 \]
 - Setting the derivative to zero yields
 \[
 W = (X^T X)^{-1}X^T T = (X^T X)^{-1}X^T
 \]
 - We then obtain the discriminant function as
 \[
 y(x) = W^T x = T^T (X^T x)
 \]
 \[\Rightarrow \] Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are "too correct".

Recap: Generalized Linear Models

- Generalized linear model
 \[y(x) = g(w^T x + w_0) \]
 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \Leftrightarrow w^T x + w_0 = \text{const.} \]
 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and "too correct" data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret the \(y(x) \) as posterior probabilities.
Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

- Classical counterexample: XOR

\[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) + w_{k0} \]

- Purpose of \(\phi_j(x) \): basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right \(\phi_j \) every continuous function can (in principle) be approximated with arbitrary accuracy.

- Notation

Generalized Linear Discriminants

- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):

- Properties
 - Global
 - A small change in \(x \) affects all basis functions.

- Result
 - If we use polynomial basis functions, the decision boundary will be a polynomial function of \(x \).
 - Nonlinear decision boundaries
 - However, we still solve a linear problem in \(\phi(x) \).

Linear Basis Function Models

- Generalized Linear Discriminant Model

 \[y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = w^T \phi(x) \]

 - where \(\phi_j(x) \) are known as basis functions.
 - Typically, \(\phi_0(x) = 1 \), so that \(w_0 \) acts as a bias.
 - In the simplest case, we use linear basis functions: \(\phi(x) = x \).

- Let’s take a look at some other possible basis functions...

Linear Basis Function Models (2)

- Polynomial basis functions

- Properties
 - Local
 - A small change in \(x \) affects only nearby basis functions.
 - \(\mu_j \) and \(s \) control location and scale (width).

- Result
 - If we use polynomial basis functions, the decision boundary will be a polynomial function of \(x \).
 - Nonlinear decision boundaries
 - However, we still solve a linear problem in \(\phi(x) \).

Linear Basis Function Models (3)

- Gaussian basis functions

 \[\phi_j(x) = \exp \left\{ -\frac{(x - \mu_j)^2}{2s^2} \right\} \]

- Properties
 - Local
 - A small change in \(x \) affects only nearby basis functions.
 - \(\mu_j \) and \(s \) control location and scale (width).

Linear Basis Function Models (4)

- Sigmoid basis functions

 \[\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right) \]

 - where
 - \(\sigma(a) = \frac{1}{1 + \exp(-a)} \)

- Properties
 - Local
 - A small change in \(x \) affects only nearby basis functions.
Graduate Descent

• Learning the weights \(w \):
 - \(N \) training data points:
 \(X = \{ x_n, \ldots, x_N \} \)
 - \(K \) outputs of decision functions:
 \(y_k(x_n; w) \)
 - Target vector for each data point:
 \(T = \{ t_1, \ldots, t_N \} \)

 - Error function (least-squares error) of linear model
 \[
 E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_k) \frac{1}{M} \sum_{j=1}^{M} \phi_j(x_n) - t_k)^2
 \]
 \[
 E_n(w) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_k \right)^2
 \]
 \[
 \frac{\partial E_n(w)}{\partial w_{kj}} = \sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_k \frac{\partial \phi_j(x_n)}{\partial w_{kj}}
 \]

• “Batch learning”
 \[
 w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \frac{\partial E(w)}{\partial w_{kj}} |_{w^{(\tau)}}
 \]
 \(\eta \): Learning rate

• “Sequential updating”
 \[
 E(w) = \sum_{n=1}^{N} E_n(w)
 \]
 \[
 w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} |_{w^{(\tau)}}
 \]
 \(\eta \): Learning rate

 - Compute the gradient based on a single data point at a time:
 \[
 \frac{\partial E_n(w)}{\partial w_{kj}} = \phi_j(x_n) \left(y_k(x_n; w) - t_k \right)
 \]

 - Compute the gradient based on all training data:
 \[
 \frac{\partial E(w)}{\partial w_{kj}} = \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_k \right) \phi_j(x_n)
 \]

Basic Strategies

• Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

• Iteratively Reweighted Least Squares

• Machine Learning
 - Probabilistic discriminative models
 - Logistic signode (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares

• Note on Error Functions
 - Closed form
 - More complex procedures available

• Error function (entropy error)
 - For decision functions
 - For classification problems

• Error function (class generalization)
 - Adaptive boosting
 - Neural networks

• Error function (softmax)
 - Softmax regression

• Error function (softmax)
 - Softmax (logit function)
 - Class-specific output

• Error function (cross-entropy)
 - Cross-entropy error
Delta rule (=LMS rule)

\[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

where

\[\delta_{kn} = y_k(x_n; w) - t_{kn} \]

\[\Rightarrow \text{Simply feed back the input data point, weighted by the classification error.} \]

Probabilistic Discriminative Models

- We have seen that we can write

\[p(C_1 | x) = \sigma(a) = \frac{1}{1 + \exp(-a)} \]

- We can obtain the familiar probabilistic model by setting

\[a \equiv \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]

- Or we can use generalized linear discriminant models

\[a = w^T x \]

\[\text{or} \quad a = w^T \phi(x) \]

Gradient Descent

- Cases with differentiable, non-linear activation function

\[y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right) \]

- Gradient descent

\[\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

\[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

\[\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \]

Summary: Generalized Linear Discriminants

- Properties
 - General class of decision functions.
 - Nonlinearity \(g() \) and basis functions \(\phi_j \) allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches are available (e.g. Newton-Raphson), but they are more expensive to compute.

- Limitations / Caveats
 - Flexibility of model is limited by curse of dimensionality
 - \(g() \) and \(\phi_j \) often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

- Gradient Descent

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares

- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution

- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Probabilistic Discriminative Models

- In the following, we will consider models of the form

\[p(C_1 | \phi) = y(\phi) = \sigma(w^T \phi) \]

with

\[p(C_2 | \phi) = 1 - p(C_1 | \phi) \]

- This model is called logistic regression.

- Why should we do this? What advantage does such a model have compared to modeling the probabilities?

\[p(C_1 | \phi) = \frac{p(\phi|C_1)p(C_1)}{p(\phi|C_1)p(C_1) + p(\phi|C_2)p(C_2)} \]

- Any ideas?
Let's look at the number of parameters...

- Assume we have an M-dimensional feature space ϕ.
- And assume we represent $p(\phi|C_i)$ and $p(C_i)$ by Gaussians.
- How many parameters do we need?
 - For the means: $2M$
 - For the covariances: $M(M+1)/2$
 - Together with the class priors, this gives $M(M+5)/2 + 1$ parameters!

- How many parameters do we need for logistic regression?
 - Just the values of w ⇒ For large M, logistic regression has clear advantages!

Logistic Regression

- Let's consider a data set $\{\phi_n, t_n\}$ with $n = 1, \ldots, N$, where $\phi_n = \phi(x_n)$ and $t_n \in \{0, 1\}$, $t = (t_1, \ldots, t_N)^T$.
- With $y_n = p(C_1|\phi_n)$, we can write the likelihood as
 $$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$
- Define the error function as the negative log-likelihood
 $$E(w) = -\ln p(t|w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}$$
 - This is the so-called cross-entropy error function.

Gradient of the Error Function

- Gradient for logistic regression
 $$\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$
- Does this look familiar to you?
- This is the same result as for the Delta (\textit{LMS}) rule
 $$w_{k,j}^{(\tau+1)} = w_{k,j}^{(\tau)} - \eta (y_{\tau}(x_n; w) - t_{\tau,n}) \phi_j(x_n)$$
- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

Logistic Sigmoid

- Properties
 - Definition: $\sigma(a) = \frac{1}{1 + \exp(-a)}$
 - Inverse: $a = \ln \left(\frac{\sigma}{1 - \sigma} \right)$ "logit" function
 - Symmetry property: $\sigma(-a) = 1 - \sigma(a)$
 - Derivative: $\frac{da}{da} = \sigma(1 - \sigma)$

Gradient of the Error Function

- Error function
 $$E(w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\}$$
- Gradient
 $$\nabla E(w) = -\sum_{n=1}^{N} \left\{ t_n \frac{\partial \ln y_n}{\partial w} + (1 - t_n) \frac{\partial \ln (1 - y_n)}{\partial w} \right\}$$
 $$= -\sum_{n=1}^{N} \left\{ t_n \frac{1 - y_n}{y_n} \phi_n - (1 - t_n) \frac{y_n}{1 - y_n} \phi_n \right\}$$
 $$= \sum_{n=1}^{N} (t_n - y_n) \phi_n$$

A More Efficient Iterative Method...

- Second-order Newton-Raphson gradient descent scheme
 $$w_{\tau+1} = w_{\tau} - H^{-1} \nabla E(w)$$
 where $H = \nabla^2 E(w)$ is the Hessian matrix, i.e. the matrix of second derivatives.
- Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.
Newton-Raphson for Least-Squares Estimation

- Let’s first apply Newton-Raphson to the least-squares error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (w^T \phi_n - t_n)^2 \]
 \[\nabla E(w) = \sum_{n=1}^{N} (w^T \phi_n - t_n) \phi_n = \Phi^T \Phi w - \Phi^T t \]
 \[H = \nabla^2 E(w) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \]
 where \(\Phi = \left[\begin{array}{c} \phi_1^T \\ \vdots \\ \phi_N^T \end{array} \right] \)
- Resulting update scheme:
 \[w^{(r+1)} = w^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T (y - t) \]
 = \((\Phi^T \Phi)^{-1} \Phi^T t \) \quad Closed-form solution!

Iteratively Reweighted Least Squares

- Update equations
 \[w^{(r+1)} = w^{(r)} - \left(\Phi^T R \Phi \right)^{-1} \Phi^T (y - t) \]
 \[= \left(\Phi^T R \Phi \right)^{-1} \left\{ \Phi^T R \Phi w^{(r)} - \Phi^T (y - t) \right\} \]
 \[= \left(\Phi^T R \Phi \right)^{-1} \Phi^T R z \]
 where \(z = \Phi w^{(r)} - R^{-1} (y - t) \)
- Again very similar form (normal equations)
 - But now with non-constant weighting matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \Rightarrow Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\theta|C) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than \(\sim 500 \).

Softmax Regression

- Multi-class generalization of logistic regression
 - In logistic regression, we assumed binary labels \(t_n \in \{0, 1\} \).
 - Softmax generalizes this to \(K \) values in 1-of-\(K \) notation.
 \[y(x; w) = \begin{cases}
 P(y = 1|x; w) = \frac{1}{\sum_{j=1}^{K} \exp(w_j^T x)} \exp(w_1^T x) \\
 \vdots \\
 P(y = K|x; w) = \frac{1}{\sum_{j=1}^{K} \exp(w_j^T x)} \exp(w_K^T x)
\end{cases} \]
 - This uses the \texttt{softmax} function
 \[\text{softmax}(a_k) = \frac{\exp(a_k)}{\sum_{j} \exp(a_j)} \]
 - Note: the resulting distribution is normalized.
Softmax Regression Cost Function

- Logistic regression
 - Alternative way of writing the cost function
 \[
 E(w) = - \sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\}
 \]
 \[
 = - \sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ I(t_n = k) \ln P(y_n = k|x_n; w) \right\}
 \]
 - Softmax regression
 - Generalization to K classes using indicator functions.

\[
E(w) = - \sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ I(t_n = k) \ln \frac{\exp(w^T x_n)}{\sum_{j=1}^{K} \exp(w^T x_n)} \right\}
\]

Optimization

- Again, no closed-form solution is available
 - Resort again to Gradient Descent
 - Gradient

\[
\nabla_w E(w) = - \sum_{n=1}^{N} \left\{ I(t_n = k) \ln P(y_n = k|x_n; w) \right\}
\]

- Note
 - \(\nabla_w E(w)\) is itself a vector of partial derivatives for the different components of \(w\).
 - We can now plug this into a standard optimization package.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Note on Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points
 - Generally does not lead to good classifiers.

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

Note on Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate (error = #misclassifications)
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Comparing Error Functions (Loss Functions)

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.
Overview: Error Functions

- **Ideal Misclassification Error**
 - This is what we would like to optimize.
 - But cannot compute gradients here.

- **Quadratic Error**
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

- **Cross-Entropy Error**
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

⇒ **Looking at the error function this way gives us an analysis tool to compare the properties of classification approaches.**

References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006