Recap: Mixture of Gaussians (MoG)

- "Generative model"
- "Weight" of mixture component

\[p(j) = \pi_j \]

\[p(x|\theta_j) \]

\[p(x) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]

Recap: Estimating MoGs – Iterative Strategy

- Assuming we knew the mixture components...

\[f(x) \]

- ML for Gaussian #1
- ML for Gaussian #2

\[h(j = 1|x_n) = 1 111 \]
\[h(j = 2|x_n) = 0 000 \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{n=1}^{N} h(j = 1|x_n)} \]
\[\mu_2 = \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{n=1}^{N} h(j = 2|x_n)} \]

Recap: K-Means Clustering

- Iterative procedure
 1. Initialization: pick \(K \) arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks
Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components
 \[\gamma_j(x_n) \leftarrow \frac{\pi_j N(x_n \mid \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k N(x_n \mid \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K; \quad n = 1, \ldots, N \]
 - M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[\hat{N}_j \leftarrow \frac{1}{N} \sum_{n=1}^{N} \gamma_j(x_n) \]
 \[\hat{\mu}^{new}_j \leftarrow \frac{1}{N_j} \sum_{n=1}^{N_j} \gamma_j(x_n) x_n \]
 \[\hat{\Sigma}^{new}_j \leftarrow \frac{1}{N_j} \sum_{n=1}^{N_j} \gamma_j(x_n) (x_n - \hat{\mu}^{new}_j)(x_n - \hat{\mu}^{new}_j)^T \]

Slide adapted from Bernt Schiele

Slide credit: Bernt Schiele

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Slide credit: Bernt Schiele

Learning Discriminant Functions

- General classification problem
 - Goal: take a new input \(x \) and assign it to one of \(K \) classes \(C_k \).
 - Given: training set \(X = \{ x_1, \ldots, x_N \} \) with target values \(T = \{ t_1, \ldots, t_N \} \).
 - Learn a discriminant function \(y(x) \) to perform the classification.

- 2-class problem
 - Binary target values: \(t_n \in \{ 0,1 \} \)

- K-class problem
 - 1-of-K coding scheme, e.g. \(\mathbf{t}_n = (0, 1, 0, 0, 0)^T \)

Slide credit: Bernt Schiele
Two simple strategies

- **One-vs-all classifiers**
 - Combine K linear functions if
 - $y_k(x) = w_k^T x + w_{k0}$
 - Resulting decision hyperplanes:
 - $y_k(x) = w_k^T x + w_{k0}$
 - It can be shown that the decision regions of such a discriminant are always singly connected and convex.
 - This makes linear discriminant models particularly suitable for problems for which the conditional densities $p(x|y_i)$ are unimodal.

- **One-vs-one classifiers**
 - How many classifiers do we need in both cases?
 - What difficulties do you see for those strategies?
General Classification Problem

- Classification problem
 - Let's consider K classes described by linear models
 \[y_k(x) = w_k^T x + w_{k0}, \quad k = 1, \ldots, K \]
 - We can group those together using vector notation
 \[y(x) = \tilde{W}^T \tilde{x} \]
 where
 \[\tilde{W} = \begin{bmatrix} w_{10} & \ldots & w_{K0} \\ w_{11} & \ldots & w_{K1} \\ \vdots & \ddots & \vdots \\ w_{1D} & \ldots & w_{KD} \end{bmatrix} \]
 - The output will again be in 1-of-K notation.
 \[\Rightarrow \text{We can directly compare it to the target value } t = [t_1, \ldots, t_K]^T \]

Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error
 - We could write this as
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2 \]
 \[= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (w_k^T x_n - t_{kn})^2 \]
 \[= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left[(w_k^T x_n - t_{kn})^2 \right] \]
 \[\Rightarrow \text{But let's stick with the matrix notation for now...} \]
 \[\Rightarrow \text{The result will be simpler to express and we'll learn some} \]
 \[\text{nice matrix algebra rules along the way...} \]

- Of course, we need to solve for the discriminant function parameters.

Least-Squares Classification

- Multi-class case
 - Let's formulate the sum-of-squares error in matrix notation
 \[E_D(\tilde{W}) = \frac{1}{2} \text{Tr} \left\{ (\tilde{W} \tilde{x} - T)^T (\tilde{W} \tilde{x} - T) \right\} \]
 - Taking the derivative yields
 \[\frac{\partial}{\partial \tilde{W}} E_D(\tilde{W}) = \frac{1}{2} \text{Tr} \left\{ (\tilde{W} \tilde{x} - T)^T (\tilde{W} \tilde{x} - T) \right\} \]
 \[= \frac{1}{2} \text{Tr} \left\{ \frac{\partial}{\partial \tilde{W}} (\tilde{W} \tilde{x} - T)^T (\tilde{W} \tilde{x} - T) \right\} \]
 \[= \frac{1}{2} \text{Tr} \left\{ \tilde{X}^T (\tilde{W} \tilde{x} - T) \right\} \]
 \[\Rightarrow \text{Exact, closed-form solution for the discriminant function parameters.} \]
Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are "too correct".

- Another example:
 - 3 classes (red, green, blue)
 - Linearly separable problem
 - Least-squares solution: Most green points are misclassified!

- Deeper reason for the failure
 - Least-squares corresponds to Maximum Likelihood under the assumption of a Gaussian conditional distribution.
 - However, our binary target vectors have a distribution that is clearly non-Gaussian!
 - ⇒ Least-squares is the wrong probabilistic tool in this case!

Topics of This Lecture

- Linear discriminant functions
 - Definition
 - Extension to multiple classes
- Least-squares classification
 - Derivation
 - Shortcomings
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Generalized Linear Models

- Consider 2 classes:
 \[p(C_1 | x) = \frac{p(x | C_1)p(C_1)}{p(x | C_1)p(C_1) + p(x | C_2)p(C_2)} \]
 \[= \frac{1}{1 + \exp(-a)} \]
 \[= 1 + \exp(-a) \]
 \[= g(a) \]
 \[\text{with } a = \ln \left(\frac{p(x | C_1)p(C_1)}{p(x | C_2)p(C_2)} \right) \]

Logistic Sigmoid Activation Function

\[g(a) = \frac{1}{1 + \exp(-a)} \]

Example: Normal distributions with identical covariance
Normalized Exponential

- General case of $K > 2$ classes:
 \[
 p(C_k|x) = \frac{p(x|C_k)p(C_k)}{\sum_j p(x|C_j)p(C_j)}
 \]
 \[
 = \frac{\exp(a_k)}{\sum_j \exp(a_j)}
 \]
 with $a_k = \ln p(x|C_k)p(C_k)$

 - This is known as the **normalized exponential** or **softmax** function

 - Can be regarded as a multiclass generalization of the logistic sigmoid.

Relationship to Neural Networks

- 2-Class case
 \[
 y(x) = g \left(\sum_{i=0}^{D} w_i x_i \right) \quad \text{with} \quad x_0 = 1 \quad \text{constant}
 \]

- Neural network ("single-layer perceptron")

Other Motivation for Nonlinearity

- Recall least-squares classification

 - One of the problems was that data points that are "too correct" have a strong influence on the decision surface under a squared-error criterion.

 \[
 E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_n)^2
 \]

 - Reason: the output of $y(x; w)$ can grow arbitrarily large for some x_n:

 \[
 y(x; w) = w^T x + w_0
 \]

 - By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences

 \[
 y(x; w) = g(w^T x + w_0)
 \]

Discussion: Generalized Linear Models

- Advantages

 - The nonlinearity gives us more flexibility.

 - Can be used to limit the effect of outliers.

 - Choice of a sigmoid leads to a nice probabilistic interpretation.

- Disadvantage

 - Least-squares minimization in general no longer leads to a closed-form analytical solution.

 ⇒ Need to apply iterative methods.

 ⇒ Gradient descent.
Learning in Neural Networks

Up to now: restrictive assumption
- Only consider linear decision boundaries

Classical counterexample: XOR

By choosing the right training data points:
- The error function can in general no longer be minimized in closed form.

Learning in Neural Networks
- K functions (outputs) $y_i(x; w)$
- Single-layer networks: ϕ_j are fixed, only weights w are learned.
- Multi-layer networks: both the w and the ϕ_j are learned.

We will take a closer look at neural networks from lecture 11 on. For now, let’s first consider generalized linear discriminants in general…

Generalized Linear Discriminants

Model
$$ y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = y_k(x; w) $$

- K functions (outputs $y_i(x; w)$)
- Learning in Neural Networks
 - Single-layer networks: ϕ_j are fixed, only weights w are learned.
 - Multi-layer networks: both the w and the ϕ_j are learned.

We will take a closer look at neural networks from lecture 11 on. For now, let’s first consider generalized linear discriminants in general…

Error function (least-squares error) of linear model
$$ E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2 $$
$$ = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2 $$

Gradient Descent

- Learning the weights w:
 - N training data points: $X = \{x_1, \ldots, x_N\}$
 - K outputs of decision functions: $y_k(x_n; w)$
 - Target vector for each data point: $T = \{t_{1n}, \ldots, t_{Nn}\}$

- Error function (least-squares error) of linear model
$$ E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2 $$

- “Batch learning”
 $$ w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} (w^{(r)}) $$
 η: Learning rate

- Compute the gradient based on all training data:
$$ \frac{\partial E(w)}{\partial w_{kj}} $$

Slide credit: Bernt Schiele

Slide credit: Bernt Schiele
Gradient Descent – Basic Strategies

- "Sequential updating"

 $$E(w) = \sum_{n=1}^{N} E_n(w)$$

 $$w_{k}^{(\tau+1)} = w_k^{(\tau)} - \eta \frac{\partial E_n(w)}{\partial w_{k}} |_{w^{(\tau)}}$$

 - Learning rate

 - Compute the gradient based on a single data point at a time:

 $$\frac{\partial E_n(w)}{\partial w_{k}}$$

- Several possible parameter choices minimize training error.

- Limitations / Caveats

 - Delta gradient descent approaches available

 $$50$$

 - Often introduce additional parameters.

 - More information on Linear Discriminant Functions can be
 found in Chapter 4 of Bishop’s book (in particular Chapter 4.1).