

Machine Learning – Lecture 4

Probability Density Estimation III

22.10.2017

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Exam dates
 - According to rwth online, the exam dates are

> 1st try Sat 02.03.2019 10:30 – 12:00h

> 2nd try Thu 21.03.2019 13:30 – 15:30h

Exam registration will start in early December...

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - ightharpoonup Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \dots, x_n\}$ e independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

B. Leibe

Recap: Histograms

Basic idea:

Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- > Often, the same width is used for all bins, $\Delta_i = \Delta$.
- \triangleright This can be done, in principle, for any dimensionality D...

...but the required number of bins grows exponentially with D!

Exercise 1.5

Recap: Kernel Density Estimation

Approximation formula:

- Kernel methods
 - Place a kernel window k at location x and count how many data points fall inside it.

K-Nearest Neighbor

Increase the volume V until the K nearest data points are found.

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

Mixture Distributions

- A single parametric distribution is often not sufficient
 - E.g. for multimodal data

Mixture of Gaussians (MoG)

Sum of M individual Normal distributions

In the limit, every smooth distribution can be approximated this way (if M is large enough)

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

Mixture of Gaussians

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j) p(j)$$

Likelihood of measurement x given mixture component j

$$p(x|\theta_j) = \mathcal{N}(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right\}$$

$$p(j)=\pi_j$$
 with $0\cdot \pi_j\cdot 1$ and $\sum_{i=1}^m \pi_j=1$ Prior of component j

- Notes
 - > The mixture density integrates to 1: $\int p(x)dx = 1$
 - The mixture parameters are

$$\theta = (\pi_1, \mu_1, \sigma_1, \dots, \pi_M, \mu_M, \sigma_M)$$

Mixture of Gaussians (MoG)

"Generative model"

 $p(j) = \pi_j$ "Weight" of mixture component

Mixture component

Mixture density

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$

Mixture of Multivariate Gaussians

Mixture of Multivariate Gaussians

Multivariate Gaussians

$$p(\mathbf{x}|\theta) = \sum_{j=1} p(\mathbf{x}|\theta_j) p(j)$$

$$p(\mathbf{x}|\theta_j) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)\right\}$$

Mixture weights / mixture coefficients:

$$p(j) = \pi_j$$
 with $0 \cdot \pi_j \cdot 1$ and $\sum_{j=1}^m \pi_j = 1$

Parameters:

$$\theta = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

Mixture of Multivariate Gaussians

"Generative model"

B. Leibe

Mixture of Gaussians – 1st Estimation Attempt

- Maximum Likelihood
 - $_{ imes}$ Minimize $E=-\ln L(heta)=-\sum \ln p(\mathbf{x}_n| heta)$ n=1
 - Let's first look at μ_i :

$$\frac{\partial E}{\partial \boldsymbol{\mu}_i} = 0$$

We can already see that this will be difficult, since

$$\ln p(\mathbf{X}|m{\pi},m{\mu},m{\Sigma}) = \sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|m{\mu}_k,m{\Sigma}_k)
ight\}$$

B. Leibe

This will cause problems!

Mixture of Gaussians – 1st Estimation Attempt

Minimization:

$$\frac{\partial E}{\partial \boldsymbol{\mu}_{j}} = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \boldsymbol{\mu}_{j}} p(\mathbf{x}_{n} | \theta_{j})}{\sum_{k=1}^{K} p(\mathbf{x}_{n} | \theta_{k})}$$

$$egin{aligned} & rac{\partial}{\partial oldsymbol{\mu}_j} \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) = \ & oldsymbol{\Sigma}^{-1}(\mathbf{x}_n - oldsymbol{\mu}_j) \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \end{aligned}$$

$$= -\sum_{n=1}^{N} \left(\mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_j) \frac{p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^{K} p(\mathbf{x}_n | \theta_k)} \right)$$

$$= -\mathbf{\Sigma}^{-1} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j)$$

$$= -\sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j) \underbrace{\frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}}^{!} \stackrel{!}{=} 0$$

We thus obtain

$$\Rightarrow oldsymbol{\mu}_j = rac{\sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)}$$

$$=\gamma_j(\mathbf{x}_n)$$

"responsibility" of component j for \mathbf{x}_n

Mixture of Gaussians – 1st Estimation Attempt

But...

$$\boldsymbol{\mu}_{j} = \frac{\sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n})} \quad \gamma_{j}(\mathbf{x}_{n}) = \frac{\pi_{j} \mathcal{N}(\mathbf{x}_{n} \boldsymbol{\mu}_{j}) \boldsymbol{\Sigma}_{j})}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n} \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}$$

I.e. there is no direct analytical solution!

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = f(\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Mixture of Gaussians – Other Strategy

Other strategy:

- Observed data:
- Unobserved data:
 - Unobserved = "hidden variable": j|x

$$h(j=1|x_n) =$$

$$h(j=2|x_n) =$$

20

Mixture of Gaussians – Other Strategy

Assuming we knew the values of the hidden variable...

$$\mu_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{i=1}^{N} h(j=1|x_n)}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} h(j=1|x_n)x_n}{\sum_{i=1}^{N} h(j=1|x_n)} \quad \mu_2 = \frac{\sum_{n=1}^{N} h(j=2|x_n)x_n}{\sum_{i=1}^{N} h(j=2|x_n)}$$

Mixture of Gaussians - Other Strategy

Assuming we knew the mixture components...

• Bayes decision rule: Decide j = 1 if

$$p(j=1|x_n) > p(j=2|x_n)$$

Clustering with Hard Assignments

Let's first look at clustering with "hard assignments"

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - > Technical advice
- Applications

K-Means Clustering

- Iterative procedure
 - 1. Initialization: pick K arbitrary centroids (cluster means)
 - Assign each sample to the closest centroid.
 - Adjust the centroids to be the means of the samples assigned to them.
 - 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

K-Means – Example with K=2

B. Leibe

26 Image source: C.M. Bishop, 2006

K-Means Clustering

 K-Means optimizes the following objective function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

where

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||\mathbf{x}_n - \boldsymbol{\mu}_j||^2 \\ 0 & \text{otherwise.} \end{cases}$$

- I.e., r_{nk} is an indicator variable that checks whether μ_k is the nearest cluster center to point \mathbf{x}_n .
- In practice, this procedure usually converges quickly to a local optimum.

RWTHAACHEN UNIVERSITY

Example Application: Image Compression

RWTHAACHEN UNIVERSITY

Example Application: Image Compression

B. Leibe

Summary K-Means

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Problem cases

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters only

Extensions

- Speed-ups possible through efficient search structures
- General distance measures: k-medoids

(A): Undesirable clusters

(B): Ideal clusters

Topics of This Lecture

- Mixture distributions
 - Recap: Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

EM Clustering

- Clustering with "soft assignments"
 - Expectation step of the EM algorithm

EM Clustering

- Clustering with "soft assignments"
 - Maximization step of the EM algorithm

$$\boldsymbol{\mu}_j = \frac{\sum_{n=1}^N p(j|\mathbf{x}_n)\mathbf{x}_n}{\sum_{n=1}^N p(j|\mathbf{x}_n)}$$

Maximum Likelihood estimate

Credit Assignment Problem

- "Credit Assignment Problem"
 - If we are just given x, we don't know which mixture component this example came from

$$p(\mathbf{x}|\theta) = \sum_{j=1}^{2} \pi_j p(\mathbf{x}|\theta_j)$$

We can however evaluate the posterior probability that an observed x was generated from the first mixture component.

$$\begin{split} p(j=1|\mathbf{x},\theta) &= \frac{p(j=1,\mathbf{x}|\theta)}{p(\mathbf{x}|\theta)} \\ p(j=1,\mathbf{x}|\theta) &= p(\mathbf{x}|j=1,\theta)p(j=1) = p(\mathbf{x}|\theta_1)p(j=1) \\ p(j=1|\mathbf{x},\theta) &= \frac{p(\mathbf{x}|\theta_1)p(j=1)}{\sum_{j=1}^2 p(\mathbf{x}|\theta_j)p(j)} &= \mathbf{\gamma}_j(\mathbf{x}) \\ &\text{"responsibility" of} \end{split}$$

B. Leibe

component j for \mathbf{x} .

EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \qquad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) = \text{soft number of samples labeled } j$$

$$\hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\mu}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}})^{\text{T}}$$

38

EM Algorithm – An Example

39

Image source: C.M. Bishop, 2006

EM – Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - ${f \Sigma}_k = \sigma_k^2 {f I}$ (this also holds in general)
 - Assume component j is exactly centered on data point \mathbf{x}_n . This data point will then contribute a term in the likelihood function

$$\mathcal{N}(\mathbf{x}_n|\mathbf{x}_n,\sigma_j^2\mathbf{I}) = \frac{1}{\sqrt{2\pi}\sigma_j}$$

- > Enforce minimum width for the Gaussians
- m > E.g., instead of $m \Sigma^{\text{-}1}$, use $(m \Sigma + \sigma_{\min} m I)^{\text{-}1}$

EM - Technical Advice (2)

- EM is very sensitive to the initialization
 - \succ Will converge to a local optimum of E.
 - Convergence is relatively slow.
- ⇒ Initialize with k-Means to get better results!
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.
- Typical procedure
 - > Run k-Means M times (e.g. M = 10-100).
 - \triangleright Pick the best result (lowest error J).
 - Use this result to initialize EM
 - Set μ_i to the corresponding cluster mean from k-Means.
 - Initialize Σ_i to the sample covariance of the associated data points.

K-Means Clustering Revisited

- Interpreting the procedure
 - 1. Initialization: pick K arbitrary centroids (cluster means)
 - Assign each sample to the closest centroid. (E-Step)
 - Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 - 4. Go to step 2 (until no change)

K-Means Clustering Revisited

- K-Means clustering essentially corresponds to a Gaussian Mixture Model (MoG or GMM) estimation with EM whenever
 - > The covariances are of the K Gaussians are set to $\Sigma_j = \sigma^{\scriptscriptstyle 2} I$
 - \triangleright For some small, fixed σ^2

B. Leibe

Summary: Gaussian Mixture Models

Properties

- Very general, can represent any (continuous) distribution.
- Once trained, very fast to evaluate.
- Can be updated online.

Problems / Caveats

- Some numerical issues in the implementation
 - ⇒ Need to apply regularization in order to avoid singularities.
- EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 - ⇒ Run k-Means for some iterations as initialization!
- Need to select the number of mixture components K.
 - ⇒ Model selection problem (see later lecture)

Topics of This Lecture

- Mixture distributions
 - Recap: Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

Applications

- Mixture models are used in many practical applications.
 - Wherever distributions with complex or unknown shapes need to be represented...

- Popular application in Computer Vision
 - Model distributions of pixel colors.
 - Each pixel is one data point in, e.g., RGB space.
 - ⇒ Learn a MoG to represent the class-conditional densities.
 - ⇒ Use the learned models to classify other pixels.

Application: Background Model for Tracking

- Train background MoG for each pixel
 - Model "common" appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.
- Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (=object).
 - Easy segmentation if camera is fixed.

C. Stauffer, E. Grimson, <u>Learning Patterns of Activity Using Real-Time Tracking</u>, *IEEE Trans. PAMI*, 22(8):747-757, 2000.

Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
 - ⇒ Simple segmentation procedure (building block for more complex applications)

References and Further Reading

 More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop's book (recommendable to read).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

- Additional information
 - Original EM paper:
 - A.P. Dempster, N.M. Laird, D.B. Rubin, <u>"Maximum-Likelihood from incomplete data via EM algorithm</u>", In Journal Royal Statistical Society, Series B. Vol 39, 1977
 - > EM tutorial:
 - J.A. Bilmes, "<u>A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA