Announcements

- Exam dates
 - According to rwth online, the exam dates are:
 - 1st try: Sat 02.03.2019, 10:30 – 12:00h
 - 2nd try: Thu 21.03.2019, 13:30 – 15:30h
 - Exam registration will start in early December...

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \ldots, x_n\}$ are independent
 $$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$
 - Log-likelihood
 $$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$
 - Estimation of the parameters θ (Learning)
 - Maximize the likelihood (= minimize the negative log-likelihood)
 - Take the derivative and set it to zero.
 $$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\partial p(x_n|\theta)}{p(x_n|\theta)} \cdot \ln p(x_n|\theta) = 0$$

Recap: Kernel Density Estimation

- Approximation formula:
 $$p(x) \approx \frac{K}{NV}$$
 - fixed V determine K
 - fixed K determine V

- Kernel methods
 - Place a kernel window k at location x and count how many data points fall inside it.
- K-Nearest Neighbor
 - Increase the volume V until the K nearest data points are found.
Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt
- K-Means Clustering
 - Algorithm
 - Applications
- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice
- Applications

Mixture Distributions

- A single parametric distribution is often not sufficient
 - E.g. for multimodal data

Mixture of Gaussians (MoG)

- Sum of M individual Normal distributions
 \[f(x) = \sum_{j=1}^{M} p(x|\theta_j) p(j) \]

 - In the limit, every smooth distribution can be approximated this way (if M is large enough)

Mixture of Gaussians

\[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j) p(j) \]

\[p(x|\theta_j) = \mathcal{N}(x|\mu_j, \sigma_j^2) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp \left\{ -\frac{(x - \mu_j)^2}{2\sigma_j^2} \right\} \]

\[p(j) = \pi_j \text{ with } 0 < \pi_j < 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1 \]

Notes

- The mixture density integrates to 1:
 \[\int p(x) dx = 1 \]

- The mixture parameters are
 \[\theta = (\pi_1, \mu_1, \sigma_1, \ldots, \pi_M, \mu_M, \sigma_M) \]
Mixture of Multivariate Gaussians

- Multivariate Gaussians
 \[p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j) \]
 \[p(x|\theta_j) = \frac{1}{(2\pi)^{D/2}|\Sigma_j|^{1/2}} \exp\left\{-\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1}(x - \mu_j)\right\} \]
 - Mixture weights / mixture coefficients:
 \[p(j) = \pi_j \text{ with } 0 < \pi_j < 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1 \]
 - Parameters:
 \[\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M) \]

Mixture of Gaussians – 1st Estimation Attempt

- Maximum Likelihood
 - Minimize \(E = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta) \)
 - Let’s first look at \(\mu_j \):
 \[\frac{\partial E}{\partial \mu_j} = 0 \]
 - We can already see that this will be difficult, since
 \[\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \left\{ \sum_{j=1}^{M} \ln \pi_j \mathcal{N}(x_n|\mu_j, \Sigma_j) \right\} \]
 This will cause problems!

Mixture of Gaussians – 1st Estimation Attempt

- But...
 \[\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)} = \frac{\pi_j \mathcal{N}(x_n|\mu, \Sigma)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)} \]
 - I.e. there is no direct analytical solution!
 \[\frac{\partial E}{\partial \mu_j} = f(x_1, \mu_j, \Sigma_1, \ldots, \mu_M, \Sigma_M) \]
 - Complex gradient function (non-linear mutual dependencies)
 - Optimization of one Gaussian depends on all other Gaussians!
 - It is possible to apply iterative numerical optimization here, but in the following, we will see a simpler method.

Mixture of Multivariate Gaussians

- “Generative model”

\[p(x|\theta) = \sum_{j=1}^{M} \pi_j p(x|\theta_j) \]

Mixture of Gaussians – Other Strategy

- Other strategy:
 - Observed data:
 - Unobserved data:
 - Unobserved = “hidden variable”: \(j \)
 \[h(j = 1|x_n) = \begin{cases} 1 & 111 \\ 0 & 000 \end{cases} \]
 \[h(j = 2|x_n) = \begin{cases} 0 & 111 \\ 111 & 000 \end{cases} \]
Mixture of Gaussians – Other Strategy

- Assuming we knew the values of the hidden variable...

\[f(x) \]

ML for Gaussian #1

assumed known

\[h(j = 1|x_n) = \begin{pmatrix} 1 \\ 111 \end{pmatrix} \]

\[h(j = 2|x_n) = \begin{pmatrix} 0 \\ 000 \end{pmatrix} \]

\[\mu_1 = \frac{\sum_{n=1}^{N} h(j = 1|x_n)x_n}{\sum_{n=1}^{N} h(j = 1|x_n)} \]

\[\mu_2 = \frac{\sum_{n=1}^{N} h(j = 2|x_n)x_n}{\sum_{n=1}^{N} h(j = 2|x_n)} \]

ML for Gaussian #2

Bayes decision rule: Decide \(j = 1 \) if

\[p(j = 1|x_n) > p(j = 2|x_n) \]

Assuming we knew the mixture components...

\[f(x) \]

\[p(j = 1|x) \]

\[p(j = 2|x) \]

\[j \]

B. Leibe

Slide credit: Bernt Schiele

Clustering with Hard Assignments

- Let’s first look at clustering with “hard assignments”

\[f(x) \]

\[x \]

\[1 \quad 111 \quad 22 \quad 2 \quad 2 \quad j \]

B. Leibe

Slide credit: Bernt Schiele

K-Means Clustering

- Iterative procedure
 1. Initialization: pick \(K \) arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid.
 3. Adjust the centroids to be the means of the samples assigned to them.
 4. Go to step 2 (until no change)

- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - Final result depends on initialization.

B. Leibe

Slide credit: Bernt Schiele

Topics of This Lecture

- Mixture distributions
 - Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

- K-Means Clustering
 - Algorithm
 - Applications

- EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

- Applications

B. Leibe

Slide credit: Bernt Schiele

K-Means – Example with \(K=2 \)
K-Means Clustering

- K-Means optimizes the following objective function:
 \[J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2 \]
- where \(r_{nk} = \begin{cases} 1 & \text{if } k = \text{arg min}_j ||x_n - \mu_j||^2 \\ 0 & \text{otherwise} \end{cases} \)
- I.e., \(r_{nk} \) is an indicator variable that checks whether \(\mu_k \) is the nearest cluster center to point \(x_n \).
- In practice, this procedure usually converges quickly to a local optimum.

Example Application: Image Compression

- **Original image**
- **K = 2**
- **K = 3**
- **K = 10**

Summary K-Means

- **Pros**
 - Simple, fast to compute
 - Converges to local minimum of within-cluster squared error
- **Problem cases**
 - Setting \(k \)?
 - Sensitive to initial centers
 - Sensitive to outliers
 - Detects spherical clusters only
- **Extensions**
 - Speed-ups possible through efficient search structures
 - General distance measures: k-medoids

EM Clustering

- Clustering with “soft assignments”
 - Expectation step of the EM algorithm
 \[f(x) \]
 \[p(j|x) \]
 \[p(1|x), 0.99, 0.8, 0.2, 0.01, j \]
 \[p(2|x), 0.01, 0.2, 0.8, 0.99 \]
EM Clustering

- Clustering with “soft assignments”
 - Maximization step of the EM algorithm
 \[f(x) = \frac{\sum_{n=1}^{N} p(j|x_n)x_n}{\sum_{n=1}^{N} p(j|x_n)} \]
 - \(\mu_j = \sum_{n=1}^{N} p(j|x_n)x_n \)

- An Example
 - Will converge to a local optimum of \(f(x) \) if \(x_n \) is exactly centered on data point \(n \).
 - We can however evaluate the posterior probability that an observed \(x_n \) was generated from the first mixture component.

Technical Advice

- Convergence is relatively slow.
- Need to introduce regularization
 - Enforce minimum width for the Gaussians
 - E.g., instead of \(\Sigma^{-1} \), use \((\Sigma + \sigma^2 I)^{-1} \)

Credit Assignment Problem

- “Credit Assignment Problem”
 - If we are just given \(x \), we don’t know which mixture component this example came from
 \[p(x|\theta) = \frac{1}{\sum_{j=1}^{K} p(x|\theta_j)} \]
 - We can however evaluate the posterior probability that an observed \(x \) was generated from the first mixture component.
 \[p(j=1|x, \theta) = \frac{p(j=1, x|\theta)}{p(x|\theta)} \]
 \[p(j=1|x) = \frac{p(x|\theta_j)p(j=1)}{\sum_{j=1}^{K} p(x|\theta_j)p(j)} = \gamma_j(x) \]
 \(\text{“responsibility” of component } j \text{ for } x. \)

EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components
 \[\gamma_j(x_n) = \frac{p(N(x_n|\mu_j, \Sigma_j))}{\sum_{j=1}^{K} p(N(x_n|\mu_j, \Sigma_j))} \quad \forall j = 1, \ldots, K; \ n = 1, \ldots, N \]
 - M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[\hat{N}_j = \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j \]
 \[\hat{\mu}_j = \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n)x_n \]
 \[\hat{\Sigma}_j = \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n)(x_n - \hat{\mu}_j)(x_n - \hat{\mu}_j) \]

EM – Technical Advice

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case \(\Sigma_k = \sigma^2 I \) (this also holds in general)
 - Assume component \(j \) is exactly centered on data point \(x_n \). This data point will then contribute a term in the likelihood function
 \[N(x_n|x_n, \sigma^2 I) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{|x_n - \mu_j|^2}{2\sigma^2}} \]
 - For \(\sigma \to 0 \), this term goes to infinity!
 - Need to introduce regularization
 - Enforce minimum width for the Gaussians
 - E.g., instead of \(\Sigma^{-1} \), use \((\Sigma + \sigma^2 I)^{-1} \)

EM – Technical Advice (2)

- EM is very sensitive to the initialization
 - Will converge to a local optimum of \(E \).
 - Convergence is relatively slow.
 - Initialize with k-Means to get better results!
 - k-Means is itself initialized randomly, will also only find a local optimum.
 - But convergence is much faster.
 - Typical procedure
 - Run k-Means \(M \) times (e.g. \(M = 10–100 \)).
 - Pick the best result (lowest error \(J_j \)).
 - Use this result to initialize EM
 - Set \(\mu_j \) to the corresponding cluster mean from k-Means.
 - Initialize \(\Sigma_j \) to the sample covariance of the associated data points.
K-Means Clustering Revisited

• Interpreting the procedure
 1. Initialization: pick K arbitrary centroids (cluster means)
 2. Assign each sample to the closest centroid. (E-Step)
 3. Adjust the centroids to be the means of the samples assigned to them. (M-Step)
 4. Go to step 2 (until no change)

Summary: Gaussian Mixture Models

• Properties
 - Very general, can represent any (continuous) distribution.
 - Once trained, very fast to evaluate.
 - Can be updated online.

• Problems / Caveats
 - Some numerical issues in the implementation
 - Need to apply regularization in order to avoid singularities.
 - EM for MoG is computationally expensive
 - Especially for high-dimensional problems!
 - More computational overhead and slower convergence than k-Means
 - Results very sensitive to initialization
 - Run k-Means for some iterations as initialization!
 - Need to select the number of mixture components K.
 - Model selection problem (see later lecture)

Applications

• Mixture models are used in many practical applications.
 - Wherever distributions with complex or unknown shapes need to be represented...

 - Popular application in Computer Vision
 - Model distributions of pixel colors.
 - Each pixel is one data point in, e.g., RGB space.
 - Learn a MoG to represent the class-conditional densities.
 - Use the learned models to classify other pixels.

Application: Background Model for Tracking

• Train background MoG for each pixel
 - Model “common” appearance variation for each background pixel.
 - Initialization with an empty scene.
 - Update the mixtures over time
 - Adapt to lighting changes, etc.

 - Used in many vision-based tracking applications
 - Anything that cannot be explained by the background model is labeled as foreground (=object).
 - Easy segmentation if camera is fixed.

Topics of This Lecture

• Mixture distributions
 - Recap: Mixture of Gaussians (MoG)
 - Maximum Likelihood estimation attempt

• K-Means Clustering
 - Algorithm
 - Applications

• EM Algorithm
 - Credit assignment problem
 - MoG estimation
 - EM Algorithm
 - Interpretation of K-Means
 - Technical advice

• Applications
Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
 - Simple segmentation procedure
 (building block for more complex applications)

References and Further Reading

- More information about EM and MoG estimation is available in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book (recommendable to read).

 - More information
 - Original EM paper:
 - EM tutorial:
 - J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and Its Application to
 Parameter Estimation for Gaussian Mixture and Hidden Markov Models”
 - TR-97-021, ICSI, U.C. Berkeley, CA,USA