Machine Learning – Lecture 2

Probability Density Estimation

15.10.2018

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
Announcements: Reminders

• L2P electronic repository
 - Slides, exercises, and supplementary material will be made available here
 - Lecture recordings will be uploaded 2-3 days after the lecture
 - *L2P access should now be fixed for all registered participants!*

• Course webpage
 - http://www.vision.rwth-aachen.de/courses/
 - Slides will also be made available on the webpage

• Please subscribe to the lecture on rwth online!
 - Important to get email announcements and L2P access!
Course Outline

• Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

• Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

• Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks
Topics of This Lecture

• Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions

• Probability Density Estimation
 - General concepts
 - Gaussian distribution

• Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
Recap: The Rules of Probability

- We have shown in the last lecture

\[
p(X) = \sum_Y p(X, Y)
\]

- Product Rule

\[
p(X, Y) = p(Y|X)p(X)
\]

- From those, we can derive

\[
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}
\]

where

\[
p(X) = \sum_Y p(X|Y)p(Y)
\]
Bayes Decision Theory

“The theory of inverse probability is founded upon an error, and must be wholly rejected.”

R.A. Fisher, 1925

Thomas Bayes, 1701-1761

Bayes Decision Theory

- Example: handwritten character recognition

- Goal:
 - Classify a new letter such that the probability of misclassification is minimized.
Bayes Decision Theory

- **Concept 1: Priors (a priori probabilities)**
 - What we can tell about the probability *before seeing the data*.
 - Example:

 \[
 C_1 = a \\
 C_2 = b
 \]

 \[
 \begin{align*}
 p(C_1) &= 0.75 \\
 p(C_2) &= 0.25
 \end{align*}
 \]

- In general: \[\sum_k p(C_k) = 1 \]

Slide credit: Bernt Schiele
Bayes Decision Theory

• Concept 2: Conditional probabilities
 - Let x be a feature vector.
 - x measures/describes certain properties of the input.
 - E.g. number of black pixels, aspect ratio, …
 - $p(x|C_k)$ describes its likelihood for class C_k.

\[p(x|C_k) \]
Bayes Decision Theory

• Example:

\[p(x|a) \quad p(x|b) \]

\[x = 15 \]

• Question:
 - Which class?
 - Since \(p(x|b) \) is much smaller than \(p(x|a) \), the decision should be ‘a’ here.
Bayes Decision Theory

• Example:

\[p(x | a) \] \hspace{1cm} \[p(x | b) \]

• Question:
 - Which class?
 - Since \(p(x | a) \) is much smaller than \(p(x | b) \), the decision should be ‘b’ here.
Bayes Decision Theory

• Example:

\[p(x|a) \quad p(x|b) \]

\[x = 20 \]

• Question:
 - Which class?
 - Remember that \(p(a) = 0.75 \) and \(p(b) = 0.25 \)…
 - I.e., the decision should be again ‘a’.
 \[\Rightarrow \] How can we formalize this?

Slide credit: Bernt Schiele
Bayes Decision Theory

• Concept 3: Posterior probabilities

 We are typically interested in the \textit{a posteriori} probability, i.e., the probability of class C_k given the measurement vector x.

• Bayes’ Theorem:

$$p(C_k \mid x) = \frac{p(x \mid C_k) p(C_k)}{p(x)} = \frac{p(x \mid C_k) p(C_k)}{\sum_i p(x \mid C_i) p(C_i)}$$

• Interpretation

$$Posterior = \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}}$$

Slide credit: Bernt Schiele
Bayes Decision Theory

$p(x|a) \quad p(x|b)$

$p(x|a)p(a) \quad p(x|b)p(b)$

Decision boundary

$p(a|x) \quad p(b|x)$

Likelihood

$\text{Likelihood} \times \text{Prior}$

Posterior $= \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}}$
Bayesian Decision Theory

• **Goal:** Minimize the probability of a misclassification

Decision rule:
\[x < \hat{x} \implies C_1 \]
\[x \geq \hat{x} \implies C_2 \]

How does \(p(\text{mistake}) \) change when we move \(\hat{x} \)?

\[
p(\text{mistake}) = p(x \in R_1, C_2) + p(x \in R_2, C_1)
\]

\[
= \int_{R_1} p(x, C_2) \, dx + \int_{R_2} p(x, C_1) \, dx.
\]

\[
= \int_{R_1} p(C_2 | x)p(x) \, dx + \int_{R_2} p(C_1 | x)p(x) \, dx
\]

The green and blue regions stay constant.

Only the size of the red region varies!

Image source: C.M. Bishop, 2006
Bayes Decision Theory

- Optimal decision rule
 - Decide for C_1 if
 \[p(C_1 | x) > p(C_2 | x) \]
 - This is equivalent to
 \[p(x | C_1) p(C_1) > p(x | C_2) p(C_2) \]
 - Which is again equivalent to (Likelihood-Ratio test)
 \[\frac{p(x | C_1)}{p(x | C_2)} \frac{p(C_1)}{p(C_2)} \geq \frac{p(C_2)}{p(C_1)} \]
 Decision threshold θ

Slide credit: Bernt Schiele
Generalization to More Than 2 Classes

• Decide for class k whenever it has the greatest posterior probability of all classes:

$$p(C_k|x) > p(C_j|x) \ \forall j \neq k$$

$$p(x|C_k)p(C_k) > p(x|C_j)p(C_j) \ \forall j \neq k$$

• Likelihood-ratio test

$$\frac{p(x|C_k)}{p(x|C_j)} \frac{p(C_k)}{p(C_j)} > \frac{p(C_j)}{p(C_k)} \ \forall j \neq k$$
Classifying with Loss Functions

• Generalization to decisions with a loss function
 ➢ Differentiate between the possible decisions and the possible true classes.
 ➢ Example: medical diagnosis
 – Decisions: sick or healthy (or: further examination necessary)
 – Classes: patient is sick or healthy
 ➢ The cost may be asymmetric:

\[
\text{loss}(\text{decision} = \text{healthy} | \text{patient} = \text{sick}) \gg \text{loss}(\text{decision} = \text{sick} | \text{patient} = \text{healthy})
\]
Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix L_{kj}

$$L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k.$$

- Example: cancer diagnosis

$$L_{\text{cancer diagnosis}} = \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$$
Classifying with Loss Functions

• Loss functions may be different for different actors.

 Example:

 \[L_{stock\text{trader}}(subprime) = \begin{pmatrix} -\frac{1}{2}cgain & 0 \\ 0 & 0 \end{pmatrix} \]

 \[L_{bank}(subprime) = \begin{pmatrix} -\frac{1}{2}cgain & 0 \\ 0 & 0 \end{pmatrix} \]

 ⇒ Different loss functions may lead to different Bayes optimal strategies.
Minimizing the Expected Loss

• Optimal solution is the one that minimizes the loss.
 ➢ But: loss function depends on the true class, which is unknown.

• Solution: Minimize the expected loss

\[
\mathbb{E}[L] = \sum_k \sum_j \int_{R_j} L_{kj} p(x, C_k) \, dx
\]

• This can be done by choosing the regions \(R_j \) such that

\[
\mathbb{E}[L] = \sum_k L_{kj} p(C_k \mid x)
\]

which is easy to do once we know the posterior class probabilities \(p(C_k \mid x) \)
Minimizing the Expected Loss

- Example:
 - 2 Classes: C_1, C_2
 - 2 Decisions: α_1, α_2
 - Loss function: $L(\alpha_j | C_k) = L_{kj}$

- Expected loss (= risk R) for the two decisions:

 $\mathbb{E}_{\alpha_1}[L] = R(\alpha_1 | x) = L_{11} p(C_1 | x) + L_{21} p(C_2 | x)$

 $\mathbb{E}_{\alpha_2}[L] = R(\alpha_2 | x) = L_{12} p(C_1 | x) + L_{22} p(C_2 | x)$

- Goal: Decide such that expected loss is minimized
 - i.e. decide α_1 if $R(\alpha_2 | x) > R(\alpha_1 | x)$
Minimizing the Expected Loss

\[R(\alpha_2|x) > R(\alpha_1|x) \]
\[L_{12}p(C_1|x) + L_{22}p(C_2|x) > L_{11}p(C_1|x) + L_{21}p(C_2|x) \]
\[(L_{12} - L_{11})p(C_1|x) > (L_{21} - L_{22})p(C_2|x) \]
\[\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(C_2|x)}{p(C_1|x)} = \frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)} \]
\[\frac{p(x|C_1)}{p(x|C_2)} > \frac{(L_{21} - L_{22})}{(L_{12} - L_{11})} \]

⇒ Adapted decision rule taking into account the loss.
The Reject Option

- Classification errors arise from regions where the largest posterior probability $p(C_k|x)$ is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and, e.g., consult a human expert.
Discriminant Functions

• Formulate classification in terms of comparisons
 - Discriminant functions
 \[y_1(x), \ldots, y_K(x) \]
 - Classify \(x \) as class \(C_k \) if
 \[y_k(x) > y_j(x) \quad \forall j \neq k \]

• Examples (Bayes Decision Theory)
 \[y_k(x) = p(C_k|x) \]
 \[y_k(x) = p(x|C_k)p(C_k) \]
 \[y_k(x) = \log p(x|C_k) + \log p(C_k) \]
Different Views on the Decision Problem

- \(y_k(x) \propto p(x|C_k)p(C_k) \)
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - Then use Bayes’ theorem to determine class membership.
 ⇔ **Generative methods**

- \(y_k(x) = p(C_k|x) \)
 - First solve the inference problem of determining the posterior class probabilities.
 - Then use decision theory to assign each new \(x \) to its class.
 ⇔ **Discriminative methods**

- **Alternative**
 - Directly find a discriminant function \(y_k(x) \) which maps each input \(x \) directly onto a class label.
Topics of This Lecture

• Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions

• Probability Density Estimation
 - General concepts
 - Gaussian distribution

• Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
 - Bayesian Learning
Probability Density Estimation

• Up to now
 ➢ Bayes optimal classification
 ➢ Based on the probabilities $p(x|C_k)p(C_k)$

• How can we estimate (= learn) those probability densities?
 ➢ Supervised training case: data and class labels are known.
 ➢ Estimate the probability density for each class C_k separately:
 $$p(x|C_k)$$
 ➢ (For simplicity of notation, we will drop the class label C_k in the following.)
Probability Density Estimation

- Data: $x_1, x_2, x_3, x_4, \ldots$

- Estimate: $p(x)$

- Methods
 - Parametric representations (today)
 - Non-parametric representations (lecture 3)
 - Mixture models (lecture 4)
The Gaussian (or Normal) Distribution

• One-dimensional case
 - Mean \(\mu \)
 - Variance \(\sigma^2 \)

\[
N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
\]

• Multi-dimensional case
 - Mean \(\mu \)
 - Covariance \(\Sigma \)

\[
N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]
Gaussian Distribution – Properties

• **Central Limit Theorem**
 - “The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.”
 - In practice, the convergence to a Gaussian can be very rapid.
 - This makes the Gaussian interesting for many applications.

• **Example:** N uniform [0,1] random variables.

![Histograms showing the distribution of the sum of N uniform [0,1] random variables for $N = 1$, $N = 2$, and $N = 10$. The distribution becomes more Gaussian as N increases.](image-source:C.M. Bishop, 2006)
Gaussian Distribution – Properties

• Quadratic Form
 - \mathcal{N} depends on x through the exponent
 \[\Delta^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \]
 - Here, Δ is often called the Mahalanobis distance from x to μ.

• Shape of the Gaussian
 - Σ is a real, symmetric matrix.
 - We can therefore decompose it into its eigenvectors
 \[\Sigma = \sum_{i=1}^{D} \lambda_i u_i u_i^T \]
 \[\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T \]
 and thus obtain
 \[\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i} \]
 with
 \[y_i = u_i^T (x - \mu) \]
 \[\Rightarrow \text{Constant density on ellipsoids with main directions along the eigenvectors } u_i \text{ and scaling factors } \sqrt{\lambda_i} \]

Image source: C.M. Bishop, 2006
Gaussian Distribution – Properties

- Special cases
 - Full covariance matrix
 \[\Sigma = \begin{bmatrix} \sigma_{ij} \end{bmatrix} \]
 \(\Rightarrow \) General ellipsoid shape
 - Diagonal covariance matrix
 \[\Sigma = \text{diag}\{\sigma_i\} \]
 \(\Rightarrow \) Axis-aligned ellipsoid
 - Uniform variance
 \[\Sigma = \sigma^2 I \]
 \(\Rightarrow \) Hypersphere

Image source: C.M. Bishop, 2006
Gaussian Distribution – Properties

• The marginals of a Gaussian are again Gaussians:

\[p(x_a) \]

\[p(x_a | x_b = 0.7) \]

\[x_b = 0.7 \]
Topics of This Lecture

• Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions

• Probability Density Estimation
 - General concepts
 - Gaussian distribution

• Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
Parametric Methods

• Given
 - Data \(X = \{x_1, x_2, \ldots, x_N\} \)
 - Parametric form of the distribution with parameters \(\theta \)
 - E.g. for Gaussian distrib.: \(\theta = (\mu, \sigma) \)

• Learning
 - Estimation of the parameters \(\theta \)

• Likelihood of \(\theta \)
 - Probability that the data \(X \) have indeed been generated from a probability density with parameters \(\theta \)
 \[L(\theta) = p(X|\theta) \]
Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: \(p(x_n|\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \)
 - Assumption: all data points are independent
 \[L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta) \]
 - Log-likelihood
 \[E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta) \]

- Estimation of the parameters \(\theta \) (Learning)
 - Maximize the likelihood
 - Minimize the negative log-likelihood

Slide credit: Bernt Schiele
Maximum Likelihood Approach

• Likelihood: \(L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta) \)

• We want to obtain \(\hat{\theta} \) such that \(L(\hat{\theta}) \) is maximized.
Maximum Likelihood Approach

• Minimizing the log-likelihood
 ➢ How do we minimize a function?
 ⇒ Take the derivative and set it to zero.

 \[
 \frac{\partial}{\partial \theta} E(\theta) = - \frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n|\theta) = - \sum_{n=1}^{N} \frac{\partial}{\partial \theta} p(x_n|\theta) \frac{p(x_n|\theta)}{p(x_n|\theta)} = 0
 \]

• Log-likelihood for Normal distribution (1D case)

 \[
 E(\theta) = - \sum_{n=1}^{N} \ln p(x_n|\mu, \sigma)
 \]

 \[
 = - \sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ - \frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)
 \]
Maximum Likelihood Approach

- Minimizing the log-likelihood

\[
\frac{\partial}{\partial \mu} E(\mu, \sigma) = - \sum_{n=1}^{N} \frac{\partial}{\partial \mu} \frac{p(x_n | \mu, \sigma)}{p(x_n | \mu, \sigma)} \]

\[
= - \sum_{n=1}^{N} \frac{2(x_n - \mu)}{2\sigma^2} \]

\[
= \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu) \]

\[
= \frac{1}{\sigma^2} \left(\sum_{n=1}^{N} x_n - N\mu \right) \]

\[
\frac{\partial}{\partial \mu} E(\mu, \sigma) \neq 0 \quad \Leftrightarrow \quad \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \]

\[p(x_n | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{||x_n - \mu||^2}{2\sigma^2}}\]
Maximum Likelihood Approach

• We thus obtain

\[\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \]

“sample mean”

• In a similar fashion, we get

\[\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \]

“sample variance”

• \(\hat{\theta} = (\hat{\mu}, \hat{\sigma}) \) is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.

• This is a very important result.

• Unfortunately, it is wrong…
Maximum Likelihood Approach

• Or not wrong, but rather \textit{biased}...

• Assume the samples \(x_1, x_2, \ldots, x_N\) come from a true Gaussian distribution with mean \(\mu\) and variance \(\sigma^2\)

 ➢ We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

 \[
 \mathbb{E}(\mu_{ML}) = \mu
 \]

 \[
 \mathbb{E}(\sigma^2_{ML}) = \left(\frac{N - 1}{N}\right) \sigma^2
 \]

 \(\Rightarrow\) The ML estimate will underestimate the true variance.

• Corrected estimate:

 \[
 \tilde{\sigma}^2 = \frac{N}{N - 1} \sigma^2_{ML} = \frac{1}{N - 1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2
 \]
Maximum Likelihood – Limitations

• Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case
 \[N = 1, X = \{x_1\} \]

 \[\Rightarrow \text{Maximum-likelihood estimate:} \]

 \[\hat{\sigma} = 0! \]

 - We say ML overfits to the observed data.
 - We will still often use ML, but it is important to know about this effect.
Deeper Reason

• Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.

• This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like each other too well…
Bayesian vs. Frequentist View

• To see the difference…
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g., from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g., from a new satellite, we may revise our opinion and update the uncertainty from the prior.

\[\text{Posterior} \propto \text{Likelihood} \times \text{Prior} \]

• This generally allows to get better uncertainty estimates for many situations.

• Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.
Bayesian Approach to Parameter Learning

- Conceptual shift
 - Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - In Bayesian learning, we consider θ to be a random variable.

- This allows us to use knowledge about the parameters θ
 - i.e. to use a prior for θ
 - Training data then converts this prior distribution on θ into a posterior probability density.

- The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.

Slide adapted from Bernt Schiele
Bayesian Learning

• Bayesian Learning is an important concept
 ➢ However, it would lead to far here.
 ⇒ I will introduce it in more detail in the Advanced ML lecture.
References and Further Reading

- More information in Bishop’s book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Bayesian Learning: Ch. 1.2.3 and 2.3.6.
 - Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006