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Language

» Official course language will be English
» If at least one English-speaking student is present.
» If not... you can choose.

* However...

Please tell me when I'm talking too fast or when | should repeat
something in German for better understanding!

You may at any time ask questions in German!

> You may turn in your exercises in German.

» You may answer exam questions in German.
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Exercises and Supplementary Material

¢ Exercises
» Typically 1 exercise sheet every 2 weeks.
» Pen & paper and programming exercises
— Python for first exercise slots
— TensorFlow for Deep Learning part
» Hands-on experience with the algorithms from the lecture.

» Send your solutions the night before the exercise class.
N - yahir:rm fth pir\ib' qu Iiﬁ}fv'h ml

¢ Teams are encouraged!
» You can form teams of up to 3 people for the exercises.
» Each team should only turn in one solution via L2P.
» But list the names of all team members in the submission.

@
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

B. Leibe

Organization

¢ Lecturer
» Prof. Bastian Leibe (leibe@Uvision.rwth-aachen.de)

* Assistants

» Paul Voigtlaender (voigtlaender@vision.rwth-aachen.de)
» Sabarinath Mahadevan (mahadevan@vision.rwth-aachen.de)

=8 « Course webpage
2 » http://www.vision.rwth-aachen.de/courses/
i » Slides will be made available on the webpage and in L2P
£ » Lecture recordings as screencasts will be available via L2P
§
-
1 * Please subscribe to the lecture in rwth online!
S
§ » Important to get email announcements and L2P access!
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Organization
* Structure: 3V (lecture) + 1U (exercises)
» 6 EECS credits
» Part of the area “Applied Computer Science”
* Place & Time
» Lecture/Exercises: Mon 10:30 — 12:00 room TEMP2
» Lecture/Exercises: Thu 10:30 —12:00 room TEMP2
®
o *© Exam
£
= > Written exam
o
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£ . 18tTry TBD TBD
§ > 2 Try TBD TBD
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Course Webpage
Course Schedule
Date Title Content Material
Thu, 2017-10-12  [Introduction Introduction, Probability Theory, Bayes
Decision Theory, Minimizing Expected Loss
Mon, 2017-10-16  Prob. Density Parametric Methods, Gaussian Distribution,
Estimation | Maximum Likelihood
Thu, 2017-10-19  [Prob. Density Bayesian Learning, Nonparametric Methods,
ion 1l , Kernel Density Estimation
Mon, 2017-10-23 [Prob. Density Mixture of Gaussians, k-Means Clustering,
Estimation 1l EM-Clustering, EM Algorithm
Thu, 2017-10-26  |Linear Linear Discriminant Functions, Least-squares
Discriminant Classification, Generalized Linear Models
Functions |
2 Mon, 20171030 [Exercise 1 Matiab Tutorial, Probability Density
. i GMM, EM
g Thu, 2017-11-02  [Linear Logistic Regression, Iteratively Reweighted First exercise
§ Discriminant Least Squares, Softmax Regression, Error
> Functions Il Function Analysis on 29.10.
k= Mon, 2017-11-06 |Linear SVMs Linear SVMs, Soft-margin classifiers,
£ nonlinear basis functions
3 Thu, 2017-1109 |Non-Linear SVMs|Soft-margin dlassifiers, nonlinear basis
= functions, Kernel trick, Mercer's condition,
& Nonlinear SVMs
g http://www.vision.rwth-aachen.de/courses/
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Textbooks

* The first half of the lecture is covered in Bishop’s book.

* For Deep Learning, we will use Goodfellow & Bengio.
T s

e . Christopher M. Bishop A
Pattern Recognition and Machine Learning
Springer, 2006

(available in the library's “Handapparat”)

1. Goodfellow, Y. Bengio, A. Courville
Deep Learning
MIT Press, 2016

* Research papers will be given out for some topics.
» Tutorials and deeper introductions.
» Application papers

Machine Learning Winter ‘18
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Machine Learning

* Statistical Machine Learning

» Principles, methods, and algorithms for learning and prediction on
the basis of past evidence

* Already everywhere
» Speech recognition (e.g. Siri)
» Machine translation (e.g. Google Translate)
» Computer vision (e.g. Face detection)

Text filtering (e.g. Email spam filters)

» Operation systems (e.g. Caching)

» Fraud detection (e.g. Credit cards)

» Game playing (e.g. Alpha Go)

» Robotics (everywhere)

v
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What Is Machine Learning Useful For? '
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£ Computer Vision

é (Object Recognition, Segmentation, Scene Understanding)

ide adapted from Zoubin G B. Leibe o
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How to Find Us

* Office:
» UMIC Research Centre
» Mies-van-der-Rohe-Strasse 15, room 124

* Office hours
» If you have questions about the lecture, contact Paul or Sabarinath.

» My regular office hours will be announced
(additional slots are available upon request)

» Send us an email before to confirm a time slot.

Questions are welcome!

B. Leibe
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Your wish is

its command.

Automatic Speech Recognition
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What Is Machine Learning Useful For?

Information Retrieval
(Retrieval, Categorization, Clustering, ...)
12

ide adapted from Zoubin B, Leibe




RWTH//ACHEN
What Is Machine Learning Useful For?

RWTH//ACHET]
What Is Machine Learning Useful For?

sy Wote Price (EOD) (SUST)
Xi08 01114 1140 114208

e o
Diseases
«© ©
:: { Symptomns
8 k]
£ £
= s 4000
o o
= £
€ €
3 8
% Financial Prediction E Medical Diagnosis
§ (Time series analysis, ...) § (Inference from partial observations)
13 14
ide adapted from Zouhin G i B. Leibe de adapted from Zoubin Gl B. Leibe Image from Kevin Murphy]
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What Is Machine Learning Useful For? What Is Machine Learning Useful For?

Bioinformatics

Autonomous Driving
(Modelling gene microarray data,...)

(DARPA Grand Challenge,...)

Machine Learning Winter ‘18
Machine Learning Winter ‘18
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And you might have heard of... Machine Learning

\' :r\

* Goal
» Machines that learn to perform a task from experience

* Why?
» Crucial component of every intelligent/autonomous system
» Important for a system’s adaptability
» Important for a system’s generalization capabilities
» Attempt to understand human learning

Deep Learning
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Machine Learning: Core Questions

* Learning to perform atask from experience

e Learning
» Most important part here!
» We do not want to encode the knowledge ourselves.

» The machine should learn the relevant criteria automatically from
past observations and adapt to the given situation.

* Tools

Statistics
Probability theory
Decision theory

» Information theory
» Optimization theory

voov

v
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Example: Regression
* Automatic control of a vehicle
fxw)
X x y
Plant and j
© Controller
‘E R(s) + E(:)} 66 - C(s)
£ Input 55”7 Actuating Output
% signal
E {eror)
@
it H(s)
2
'é Feedback
= 21
de credit Bernt Schiele B. Leibe
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Machine Learning: Core Problems

¢ Input z: -
— =y € [/alt/, feb, .. /ub/]
: |
apple. ....ccbra
¢ Features

» Invariance to irrelevant input variations

» Selecting the “right” features is crucial

» Encoding and use of “domain knowledge”

» Higher-dimensional features are more discriminative.

¢ Curse of dimensionality
» Complexity increases exponentially with number of dimensions.
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Machine Learning: Core Questions

* Learning to perform atask from experience

* Task
» Can often be expressed through a mathematical function

y=fxw)
» X: Input

» y: Output
» w: Parameters (this is what is “learned”)

* Classification vs. Regression
» Regression: continuous y
» Classification: discrete y

Machine Learning Winter ‘18

— E.g. class membership, sometimes also posterior probability
20

ide credit Bernt Schiele B. Leibe

Examples: Classification
* Email filtering

xelaz]" { > ye[important, spam]

* Character recognition

=x -E]-> y € [a,b,c,...Z]

“FFFEE

* Speech recognition

FEE]

= ‘D’)‘ € [apple, ..., zebra]

[2]

f"l-‘ ,"1 —
w'ﬂ%‘vhﬁ""}" .
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Machine Learning: Core Questions

* Learning to perform atask from experience

* Performance measure: Typically one number
» % correctly classified letters
» % games won
» % correctly recognized words, sentences, answers

* Generalization performance
» Training vs. test
- “All’ data
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Machine Learning: Core Questions

* Learning to perform atask from experience

* Performance: “99% correct classification”
» Of what???
» Characters? Words? Sentences?
» Speaker/writer independent?
» Over what data set?

®
5 >
=
= + “The car drives without human intervention 99% of the time
£ ”
= on country roads
3
£
£
5
2 —
’ 25
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Machine Learning: Core Questions

¢ Learning to perform atask from experience

* Learning
» Most often learning = optimization
» Search in hypothesis space
» Search for the “best” function / model parameter w

- lLe. maximize y = f(X; W) w.r.t. the performance measure

IPerformance

ﬁearning Mcthnx

Function |¢———p |Experience

Machine Learning Winter ‘18
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Machine Learning: Core Questions

* Learning to perform atask from experience

* What data is available?
~ Data with labels: supervised learning
— Images / speech with target labels
— Car sensor data with target steering signal

» Data without labels: unsupervised learning
— Automatic clustering of sounds and phonemes
— Automatic clustering of web sites

» Some data with, some without labels: semi-supervised learning

» Feedback/rewards: reinforcement learning

Machine Learning Winter ‘18
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ide credit Bernt Schiele B. Leibe
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Machine Learning: Core Questions

* Learning is optimization of y = f(x; w)
» w: characterizes the family of functions

» w: indexes the space of hypotheses
» W vector, connection matrix, graph, ...

5Cing

g R
JEap: &

ide credit Bernt Schigle B. Leibe
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Topics of This Lecture

* Review: Probability Theory
» Probabilities
» Probability densities
» Expectations and covariances

* Bayes Decision Theory
» Basic concepts
» Minimizing the misclassification rate
» Minimizing the expected loss
» Discriminant functions
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Probability Theory

“Probability theory is nothing but common sense reduced
to calculation.”
Pierre-Simon de Laplace, 1749-1827

B. Leibe Image source: Wikipedi
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Probability Theory

[
* More general case —=
» Consider two random variables
:I/J "i} } T.

Xe{x}and Yely}
» Consider N trials and let
nij = #X =z \Y =y;}
a6 = #{X =u;}
#{Y =y;}

5

* Then we can derive

n.
~ Joint probability pX =3, =y;) = =+

N

Ci

» Marginal probability plX =mx) = 5

- " - Mij

» Conditional probability p(Y =y| X =) = .
i 33
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* From those, we can derive

The Rules of Probability

* Thus we have

Sum Rule

p(X) = p(X.Y)

Y

Product Rule p(X,Y) = p(YX)p(X)

PX[Y)p(Y)
p(X)

p(X) = ZP(XIYJP(Y)

B. Leibe

Bayes’ Theorem  p(Y|X) =

where

35
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Probability Theory
* Example: apples and
W . 00
» We have two boxes to pick from. oool lo
» Each box contains both types of fruit. 000! lo@®

» What is the probability of picking an apple?

* Formalization
- Let Be {r, b} be a random variable for the box we pick.
> Let Fe {a,o} be a random variable for the type of fruit we get.
» Suppose we pick the red box 40% of the time. We write this as

p(B=r)=04 p(B=b)=06
» The probability of picking an apple given a choice for the box is
p(F=a|B=r)=0.25 p(F=a|B=b)=0.75
» What is the probability of picking an apple?
p(F =2)=?
32
B. Leibe Image source: C.M. Bishop 200
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Probability Theory
i
~

Y nij } r

Ti

* Rules of probability
> Sum rule

L L
e, 1 .

p(X =) = .: :QZMJ = ZP()‘ =z, Y =y;)
. =t =1

» Product rule
(X — e Vo Wi TG
pX =, Y = y;) N o N
= p(Y =y X = zi)p(X = x;)

34
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Probability Densities

* Probabilities over continuous #5) Pl)
variables are defined over their
probability density function
(pdf) p(x)

b
plr e (a,b)):j p(x) da

a

dx >

* The probability that z lies in the interval (—0, z) is given by
the cumulative distribution function

P(z)= fz plz)dx

—00

36
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Expectations

* The average value of some function f (x) under a
probability distribution p(x) is called its expectation

Elf] = S p@)f@)  Elf = [ p(e) f(z) da

discrete case continuous case

* |f we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

N
1
E[f) = = D f(a)
S om=1
* We can also consider a conditional expectation
E.[flv] = Y p(elu)f(z)

,,,,,,,,,,,,, T

T 37
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Bayes Decision Theory

Thomas Bayes, 1701-1761

“The theory of inverse probability is founded upon an
error, and must be wholly rejected.”
R.A. Fisher, 1925

39

B Leibe Jmage source: Wikiped
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Bayes Decision Theory
* Concept 1: Priors (a priori probabilities) p(Ck)

» What we can tell about the probability before seeing the data.
» Example: ?

aababaaba
baaaabaaba
abaaaabba

babaabaa

* Ingeneral:

a1
de credit Bernt Schiele B. Leibe
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Variances and Covariances

* The variance provides a measure how much variability there
isin f(«) around its mean value E[f (z)].

varlf] = E [(f(«) - Elf@)))°] = Elf(+)?] - E[f(2)]?
* For two random variables z and y, the covariance is defined
by
coviz,y] = Eoy[{z - El]} {y — Ely]}]
= Euyloy) - Elz|E[y]
* If x and y are vectors, the result is a covariance matrix
covx,y] = Exy [{x —ExXHy" —E[y']}]
= Exy[xy"] - EXE[y"]

38
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Bayes Decision Theory
* Example: handwritten character recognition
[ u [ u
o S [ u
* Goal:
» Classify a new letter such that the probability of misclassification is
minimized.
40
de credit Bernt Schiele B. Lelte Jmage source: G\, Bishop, 200
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Bayes Decision Theory

* Concept 2: Conditional probabilities p(X | Ck)
» Let z be a feature vector.
» « measures/describes certain properties of the input.
— E.g. number of black pixels, aspect ratio, ...
» p(z|C}) describes its likelihood for class C.

p(x|a)

p(x|b)

42
de credit Bernt Schiele B, Leibe
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Bayes Decision Theory

x=15

* Example:

* Question:
» Which class?

- Since p(x|b)is much smaller than

p (x| athe decision should be
‘a’ here.

43
ide credit: Bernt Schiele B. Leibe
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Bayes Decision Theory
* Example:
p(x|a) p(x|b)
x=20
* Question:
» Which class?
» Remember that p(a) = 0.75 and p(b) = 0.25...
» l.e., the decision should be again ‘a’.
= How can we formalize this?
ide credit- Bernt Schiele B. Leibe 45
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Bayes Decision Theory
X|a
p(x|a) p(x|b) Likelihood
X
p(xla)p(a
p(X | b) p(b) Likelihood x Prior
N
X
Decision boundary
p(alx) P(O1X) pysierion — Likelihood x Prior
NormalizationFactor|
X
ide credit- Bernt Schiele. B. Leibe 47
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Bayes Decision Theory
* Example:
p ( X| a) p ( X| b)
X=25
* Question:
» Which class?
- Since p(x|a) is much smaller than p(X|b), the decision should
be ‘b” here.
44
ide credit: Bernt Schiele B. Leibe
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Bayes Decision Theory

* Concept 3: Posterior probabilities

p (Ck | X)
» We are typically interested in the a posteriori probability, i.e. the
probability of class C), given the measurement vector z.

* Bayes’ Theorem:

p(C, %)= p(xIC,)p(C,)  p(xIC,)p(C,)

p(x) 2.p(xIC)p(C)
i
* Interpretation
. Likelihood x Prior
Posterior = —
Normalization Factor
. B. Leibe 46
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Bayesian Decision Theory

* Goal: Minimize the probability of a misclassification

The green and blue
regions stay constant.

Only the size of the
red region varies!

p(x € R1,Cz) + p(x € Ra,C1)

= p(x,Cg)dx+f p(x,Cq) dx.
Ry :

Rz

p(mistake) =

- / P(Cap(x)dx + / p(Ci[)p(x)dx
R1 Ra

48

lmage source: G\, Bishop, 200¢
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Bayes Decision Theory

* Optimal decision rule
» Decide for C, if

p(C1|z) > p(Calz)

» This is equivalent to

p(x|C1)p(C1) > p(z|C2)p(C2)

» Which is again equivalent to (Likelihood-Ratio test) g
p(z|C1) _ p(C2) £
p(z|C2) = p(C1) %

- =
£

Decision threshold &

49
ide credit: Bernt Schiele B. Leibe
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Classifying with Loss Functions

* Generalization to decisions with a loss function
~ Differentiate between the possible decisions and the possible true

classes.
» Example: medical diagnosis
— Decisions: sick or healthy (or: further examination necessary)

— Classes: patient is sick or healthy
» The cost may be asymmetric:
loss(decision = healthy|patient = sick) >>

loss(decision = sick|patient = healthy)

Machine Learning Winter ‘18
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ide credit. Bernt Schigle B. Leibe

RWTHAACHEN
Generalization to More Than 2 Classes

* Decide for class k whenever it has the greatest posterior
probability of all classes:

p(Crlz) > p(Cjlx) Vj # K

p(z|C)p(Ck) > p(x|Cj)p(C;) Vi #k

¢ Likelihood-ratio test

p(z|Cy) - p(Cy)

p(z[C))

p(C) vi#k

50
B. Leibe
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Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix Ly

Ly; = loss for decision C; if truth is C.
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TRWTH/ACHEN
Classifying with Loss Functions

¢ Loss functions may be different for different actors.

dnvest” dont ,
» Example: invest
7 - %Cgain 0 .
Lstocktrader(SprT‘lme) = 0 0 =3
_1 -
Liyank (subprime) = < 3 ﬁgam 8 ) E

= Different loss functions may lead to different Bayes optimal
strategies.
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* Example: cancer diagnosis
Decision
cancer normal
I £ cancer ( 0 1000 )
cancer diagnosis — é normal 1 0
B. Leibe 52
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Minimizing the Expected Loss

* Optimal solution is the one that minimizes the loss.
» But: loss function depends on the true class, which is unknown.

* Solution: Minimize the expected loss

E[L] = ; ; /R Li;p(x,Cy) dx

* This can be done by choosing the regions R ; such that
E[L] =} Li;p(Cilx)
k

which is easy to do once we know the posterior class
probabilities p(Ck|x)

54
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Minimizing the Expected Loss

* Example:
» 2Classes: C,, C,
» 2 Decision: «,, o,
» Loss function: L(oy|Cy) = Ly;

» Expected loss (= risk R) for the two decisions:
Ea,[L] = Rlai|x) = Lup(Ci]x) + Laip(Ca|x)
Ea,[L] = Rlazlx) = L12p(C1]x) + Lazp(Ca

X)

* Goal: Decide such that expected loss is minimized
. le. decide o, if R(aa|x) > R(aq|x)

Machine Learning Winter ‘18
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The Reject Option

p(Cilz) p(Calz)

0.0

— z
reject region

* Classification errors arise from regions where the largest
posterior probability p(Cx|x) is significantly less than 1.
» These are the regions where we are relatively uncertain about class
membership.
» For some applications, it may be better to reject the automatic
decision entirely in such a case and e.g. consult a human expert.

Machine Learning Winter ‘18
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lmage source: G\, Bishop, 200«

RWTH LGN
Different Views on the Decision Problem

* yr(x) o< p([Cr)p(C)
» First determine the class-conditional densities for each class
individually and separately infer the prior class probabilities.
» Then use Bayes’ theorem to determine class membership.
= Generative methods

* yk(z) = p(Cilz)
» First solve the inference problem of determining the posterior class
probabilities.

» Then use decision theory to assign each new z to its class.
= Discriminative methods

* Alternative

. Directly find a discriminant function y(z)which maps each input =
directly onto a class label.
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Minimizing the Expected Loss
R(as|x) > R(az]x)
L12p(C1]x) + Loap(Calx) > L11p(C1|x) + La1p(Calx)
(L1z — Li)p(Ci|x) > (L21 — La2)p(Calx)
(L12 — L11) p(Calx) _ p(x|C2)p(C2)
(Lo1 — La2) ~ p(Cilx)  p(x[C1)p(C1)

p(x|Cy1) (L1 — Laz) p(C2)
p(x[Co) (L12 — L11) p(Ch)

= Adapted decision rule taking into account the loss.

Machine Learning Winter ‘18
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TWTH G
Discriminant Functions

* Formulate classification in terms of comparisons
» Discriminant functions

y1(x), ..., yx(x)
- Classify z as class C if
ye(z) > y;(z) Vj#k
* Examples (Bayes Decision Theory)
ye(z) = p(Cx|z)
ye(z) = p(|Ck)p(Ck)
yr(z) = logp(z|Cy) + log p(Cr)

Machine Learning Winter ‘18
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ide credit Bernt Schigle B. Leibe

TWTH G
Next Lectures...

* Ways how to estimate the probability densities ~ p(z|Cy)
> Non-parametric methods
— Histograms
— k-Nearest Neighbor
— Kernel Density Estimation
» Parametric methods
— Gaussian distribution
— Mixtures of Gaussians

* Discriminant functions
» Linear discriminants
» Support vector machines

= Next lectures...
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UNIVERSITY

References and Further Reading

* More information, including a short review of Probability
theory and a good introduction in Bayes Decision Theory
can be found in Chapters 1.1, 1.2 and 1.5 of

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

B. Leibe
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