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Announcements

 Exams
— We are in the process of sending around the exam slot assignments.
— If the assigned date doesn’t work for you, please contact us.

 Exam Procedure
— Oral exams
— Duration 30min
— 1 will give you 4 gquestions and expect you to answer 3 of them.
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Announcements (2)

« Today, we’'ll summarize the most important points from the

lecture.
— It is an opportunity for you to ask questions...
— ...or get additional explanations about certain topics.

— S0, please do ask.

» Today’s slides are intended as an index for the lecture.
— But they are not complete, won’t be sufficient as only tool.
— Also look at the exercises — they often explain algorithms in detail.
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Content of the Lecture

 Single-Object Tracking
— Background modeling
— Template based tracking
— Tracking by online classification
— Tracking-by-detection

« Bayesian Filtering

« Multi-Object Tracking

* Visual Odometry

* Visual SLAM & 3D Reconstruction

* Deep Learning for Video Analysis
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Recap: Gaussian Background Model

» Statistical model

— Value of a pixel represents a measure-
ment of the radiance of the first object
intersected by the pixel’'s optical ray.

— With a static background and static
lighting, this value will be a constant
affected by 1.i.d. Gaussian noise.

e |[dea

— Model the background distribution of each pixel by a single Gaussian
centered at the mean pixel value:

N D) = o] -3 w5 - )}

— Test if a newly observed pixel value has a high likelihood
under this Gaussian model.

= Automatic estimation of a sensitivity threshold for each pixel.
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Recap: Stauffer-Grimson Background Model

* |dea
— Model the distribution of each pixel by a mixture of K Gaussians

K
p(X) — ZWkN(Xan, zk) where i = U,%,I
k=1
— Check every new pixel value against the existing K components until
a match is found (pixel value within 2.5 o, of ;).

— If a match is found, adapt the corresponding component.

— Else, replace the least probable component by a distribution with
the new value as its mean and an initially high variance and low

prior weight.
— Order the components by the value of w, /o, and select the best
B components as the background _ b W
model, where b = arg H (Z ES > T
k=1
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Recap: Stauffer-Grimson Background Model

* Online adaptation

— Instead of estimating the MoG using EM, use a simpler online
adaptation, assigning each new value only to the matching component.

— Let M, , = 1 iff component k is the model that matched, else 0.
7T](:+1) = (1 — Od)ﬂ'l(:) + OéMk’t
— Adapt only the parameters for the matching component

pe = (1= p)u + pa Y

B = (1= )2 + p(al ) — ) (@) - )T
where
P = aN(X’n“J’k& Ek)

(i.e., the update is weighted by the component likelihood)
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Recap: Kernel Background Modeling

* Nonparametric density estimation

— Estimate a pixel’s background distribution using the kernel density
estimator K(-) as

1 .
p(x®) = = ZK(X(t) — x®)

— Choose K to be a Gaussian N(O, X) with ¥ = diag{o}. Then

(t) ()
d _1 (@, —=; )
: : ’\’ J

— A pixel is considered foreground if p( t)) < 6 for a threshold 6.
= This can be computed very fast using lookup tables for the kernel function

o2
j

(t)

values, since all inputs are discrete values.
= Additional speedup: partial evaluation of the sum usually sufficient
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Content of the Lecture

 Single-Object Tracking
— Background modeling
— Template based tracking
— Tracking by online classification
— Tracking-by-detection

« Bayesian Filtering

« Multi-Object Tracking

* Visual Odometry

* Visual SLAM & 3D Reconstruction

* Deep Learning for Video Analysis
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Recap: Estimating Optical Flow

./' ) °
R o
o—> i (@) .
[(x,y,t-1) 1(X,y,1)
* Optical Flow

— Given two subsequent frames, estimate the apparent motion field
u(x,y) and v(z,y) between them.

« Key assumptions

— Brightness constancy: projection of the same point looks the same
In every frame.

— Small motion: points do not move very far.
— Spatial coherence: points move like their neighbors.
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Recap: Lucas-Kanade Optical Flow

» Use all pixels in a KxK window to get more equations.

 Least squares problem:

- Ix(p1)  Iy(p1) |
Ii(Pz) 1@(?2)

_ Iw(I;25) [y(I;25) _

- I1(p1) |
] _ [t(Pz)

_ [t(I;25) |

A d=D

25x2 2x1 25x1

« Minimum least squares solution given by solution of
(ATA) d= ATd

2x2

N IpIe Y Iy,
S ILIy, S Iyl
Al'A
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2%x1 2x1

2 > 11y
v | T | S

|

Recall the
Harris detector!




Recap: Iterative LK Refinement

» Estimate velocity at each . ff” o
pixel using one iteration of W) e
LK estimation. | :

« Warp one image toward the N e e
other using the estimated e
flow field. Ny T

- Refine estimate by repeating —.
the process. N A0, 1

* Iterative procedure
— Results in subpixel accurate localization. X

— Converges for small displacements.
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Recap: Coarse-to-fine Optical Flow Estimation

Gaussian pyramid of image 1
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u=1.25 pixels

u=2.5 pixels

U=5 pixels

u=10 pixels

Gaussian pyramid of image 2
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Recap: Coarse-to-fine Optical Flow Estimation

Gaussian pyramid of image 1 Gaussian pyramid of image 2
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Recap: Shi-Tomasi Feature Tracker (—KLT)

* |ldea
— Find good features using eigenvalues of second-moment matrix

— Key idea: “good” features to track are the ones that can be tracked
reliably.

* Frame-to-frame tracking
— Track with LK and a pure translation motion model.

— More robust for small displacements, can be estimated
from smaller neighborhoods (e.g., 5 x5 pixels).

« Checking consistency of tracks
— Affine registration to the first observed feature instance. l
— Affine model is more accurate for larger displacements. 3 |
— Comparing to the first frame helps to minimize drift. [zs

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
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http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf

Recap: General LK Image Registration

e Goal

— Find the warping parameters p that minimize the sum-of-squares
intensity difference between the template image 7(x) and the warped
input image I(W (x;p)).

LK formulation
— Formulate this as an optimization problem

arg min ST IW(x;p)) - T(x)]

— We assume that an initial estimate of p is known and iteratively solve
for increments to the parameters Ap:

arg Igi;l Z [I(W(T’Q P+ Ap)) — T<X)] i
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Recap: Step-by-Step Derivation

« Key to the derivation
— Taylor expansion around Ap

OW
I(W(x;p+Ap)) =~ I(W(x;p)) + VI gApﬂLO(ApQ)
= I(W(|z,y|;p1,---,DPn))
-OW.  OW, OW, Aps
o1 o1 Op1 Op2 "' Opn Ap2
[ 4]
9z Oy |l aw, ow, oW, :
_ Op1 Op2 Opn - i Apn_
Gradient Jacobian Increment
parameters
OW to solve for
VI —_— A
op P
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Recap: Inverse Compositional LK Algorithm

* [terate
— Warp I to obtain I(W([z, y|; p))
— Compute the error image T([z, y]) — I(W([z, y]; p))

— Warp the gradient VI with W(|z, y|; p)

— Evaluate %—Vg at ([x, y|; p) (Jacobian)

— Compute steepest descent images VIZW

o . _
— Compute Hessian matrix ~ H =) VIQ(% [VIQ(%
— Compute > [VIQ(%} [T([CU, yl) — I(W([z, yl; P))}

T
- Compute  Ap = H' 2, |VIGY| [T([z,y)) — (W[, ]; p))
— Update the parameters p <+ p + Ap

« Until Ap magnitude is negligible
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Recap: Inverse Compositional LK Algorithm

Image Gradient X Image Gradient Y

Temp[ate

Warped Gradients Jacobian

Parameter Updates
Inverse Hessian
oo
(- . & l =
a0z
a0
T 2 3 e s ® -1
Ap H
Hessian Steepest Descent Images
H
SD Parameter Updates
10

T(x) — I{W(x;p)) T T T
Ex[VIG¥T(T(x) — I(W(x; p))]
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Course Outline

 Single-Object Tracking
— Background modeling
— Template based tracking
— Tracking by online classification
— Tracking-by-detection

« Bayesian Filtering

« Multi-Object Tracking

* Visual Odometry

* Visual SLAM & 3D Reconstruction

* Deep Learning for Video Analysis
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Recap: Tracking as Online Classification

 Tracking as binary classification problem

object
VS.
background
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Recap: Tracking as Online Classification

 Tracking as binary classification problem

object
VS.
background

|

» | g
LYY ‘

— Handle object and background changes by online updating

22 Visual Computing Institute | Prof. Dr . Bastian Leibe lel
Computer Vision 2 0 Visual Computing
Part 20 — Repetition

Institute
Slide credit: Helmut Grabner

Imaage source: Disney/Pixar



Recap: AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
— Iteratively select an ensemble of classifiers

— Reweight misclassified training examples after each iteration
to focus training on difficult cases.

 Components
— h,(x): “weak” or base classifier
= Condition: <50% training error over any distribution
— H(x): “strong” or final classifier

« AdaBoost:
— Construct a strong classifier as a thresholded linear combination of the

weighted weak classifiers:

H(x) = sign Zozm
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Recap: AdaBoost — Algorithm

1
_ forn=1,...,N.
N n b b
2. Form=1,...,M iterations
a) Train a new weak classifier h, (x) using the current weighting

coefficients W by minimizing the weighted error function
N ot : X
T = S W I () # ) 1) - {1- i A true
n=1

0, else
b) Estimate the weighted error of this classifier on X:

S W (i (%) # 1)

n=1 Wn

Initialization: Set w(" =

c) Calculate a weighting coefficient for h, (x):

1— m
amzln{ c }
em

d) Update the weighting coefficients:
wflmﬂ) = w,gm) exp {am I (hm(Xn) # t,)}
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From Offline to Online Boosting

« Main issue
— Computing the weight distribution for the samples.

— We do not know a priori the difficulty of a sample!
(Could already have seen the same sample before...)

* ldea of Online Boosting

— Estimate the importance of a sample by propagating it through
a set of weak classifiers.

— This can be thought of as modeling the information gain w.r.t. the first n
classifiers and code it by the importance weight X for the n+1 classifier.

— Proven [Oza]: Given the same training set, Online Boosting converges
to the same weak classifiers as Offline Boosting in the limit of N — oo
iterations.

N. Oza and S. Russell. Online Bagqging and Boosting.
Artificial Intelligence and Statistics, 2001.
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http://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf

Recap: From Offline to Online Boosting

off-line

Given:

- set of labeled training samples

X = {{x1,¥1) - (XL, yL) | yi £ 1}

- weight distribution over them

Do=1/L

for n =1 to N

- train a weak classifier using
samples and weight dist.

heak(x) = L(X,Dp_1)
- calculate error ¢€n
- calculate weight an/==j(en)

- update weight dist. D,

next
N
RO (x) = sign( Y- am - hiyF ()
n=1
26 Visual Computing Institute | Prof. Dr . Bastian Leibe
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on-line

Given:
- ONE labeled training sample
Xy ly£1l

- strong classifier to update

- initial importance A =1
for n =1 to N

- update the weak classifier using
samples and importance

hweak(x) = L(hek, (z,y), \)

update error estimation €n

update weight an,==f(én)

update importance weight A

next

N
RSO (x) = sign( Y an - BECF(x))

n=1
RWNTH
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Recap: Online Boosting for Feature Selection

* Introducing “Selector”

— Selects one feature from its local
feature pool

Hweak — {hfliueak’ o h’cj\tjfzak}

F=A{f1,-fm}

hsel(x) — h%eak(x)
m = argmin; e;

On-line boosting is performed on
the Selectors and not on the weak
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classifiers directly.

hSelector

()

()

H. Grabner and H. Bischof.
On-line boosting and vision.

CVPR, 2006.
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http://dx.doi.org/10.1109/CVPR.2006.215

Recap: Direct Feature Selection

E FalOIOIONOIOIO NN O,

gloabal eak classifer pool

hSelector; hSelector, Selectory
estimate estimate estimate
errors errors errors
inital estimate estimate
importance select best importance select best importance select best
=1 weak A weak % ' weak
classifier classifier classifier
(051 (05 oN [
A 4 A\ 4
update update update
weight weight ‘ weight
I |
Y

repeat for each .
trainingsample current strong classifier hStrong
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Recap: Tracking by Online Classification

from time # to £+1 Evaluate classifier
on sub-patches

Actual

Search
region

Update classifier | Analyze map and set 1
(tracker) new object position

Create
confidence map

—

\vv‘_;_,,‘."ifrl“;-;’v’ "l
L NREAS
N
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Recap: Drifting Due to Self-Learning Policy

Tracked Patches

Confidence

= Not only does it drift, it also remains confident about it!
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Course Outline

 Single-Object Tracking
— Background modeling
— Template based tracking
— Tracking by online classification
— Tracking-by-detection

« Bayesian Filtering

« Multi-Object Tracking

* Visual Odometry
* Visual SLAM & 3D Reconstruction

* Deep Learning for Video Analysis

31 Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 20 — Repetition Institute




Recap: Tracking-by-Detection

« Main ideas
— Apply a generic object detector to find objects of a certain class
— Based on the detections, extract object appearance models
— Link detections into trajectories
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Recap: Elements of Tracking

-~
o Do
( o 1° ‘Q /
o \ _ // o -
O
Detection Data association Prediction
» Detection
— Where are candidate objects?
« Data association
— Which detection corresponds to which object?
 Prediction
— Where will the tracked object be in the next time step?
RWNTH

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 20 — Repetition Institute




Recap: Sliding-Window Object Detection

* For sliding-window
object detection,
we need to:

1. Obtain training data
2. Define features
3. Define a classifier

Training examples
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®
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Y —>»| Car/non-car
\: Classifier
\_ y,
Feature




Recap: Object Detector Design

* In practice, the classifier often determines the design.
— Types of features
— Speedup strategies

* We looked at 3 state-of-the-art detector designs
— Based on SVMs

— Based on Boosting

— Based on CNNs
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Recap: Histograms of Oriented Gradients (HOG)

Object/Non-object
 Holistic object representation t

— Localized gradient orientations

Linear SVM
?
Collect HOGs over
detection window

?
Contrast normalize over
overlapping spatial cells
T
Weighted vote in spatial &
orientation cells

?
Compute gradients

?
Gamma compression

— ————
i s S e

Image Window
Visual Computing Institute | Prof. Dr . Bastian Leibe
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Recap: Deformable Part-based Model (DPM)

Score of filter:
dot product of filter
with HOG features
underneath it

Score of object hypothesis
IS sum of filter scores
minus deformation costs

Image pyramid HOG feature pyramid

« Multiscale model captures features at two resolutions

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
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Recap: DPM Hypothesis Score

“data term”

SCOre(Po, -+« Pn) = ZE‘ - ¢(H, p;)

]

filters

“spatial prior”

> di - (dz?, dy?)

=1 T displacements

deformation parameters
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score(z) = - W(H, z)

/

concatenation filters and

deformation parameters

\

concatenation of HOG
features and part
displacement features

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
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Recap: Integral Channel Features

Gradient LUV color

6 Orientation bins 2
magnitude channels

 Generalization of Haar Wavelet idea from Viola-Jones

— Instead of only considering intensities, also take into account other
feature channels (gradient orientations, color, texture).

— Still efficiently represented as integral images.

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, BMVC’09.
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http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC09ChnFtrs.pdf

Recap: Integral Channel Features

GEEE -

» Generalize also block computation

— 1st order features:
= Sum of pixels in rectangular region.

input image
(d) histogram

(a) first-order

- = £
- ¥y
- Y e el

e Tl -

— 2nd_grder features:
= Haar-like difference of sum-over-blocks

— Generalized Haar:
= More complex combinations of weighted rectangles

— Histograms

= Computed by evaluating local sums on quantized images.
RWTH
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Recap: VeryFast Detector

 |dea 1: Invert the template scale vs. image scale relation

T G
g G

1 model, _
50 image scales 1 image scale

50 models,

R. Benenson, M. Mathias, R. Timofte, L. Van Gool. Pedestrian Detection at
100 Frames per Second, CVPR’12.
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http://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf

Recap: VeryFast Detector

 |dea 2: Reduce training time by feature interpolation

N 7 i /‘, ». Lﬁliy N '3 j ;, ». Lﬁliy 2
iy % ; " ot s . >
1 L 1 L . —
2, & »aﬂ ¥ S, @ | T "
[ 5 = [ »
' e 3 | 5 | Bt = | 3
P S M T b L o N P LA s =
. - "'! : » 7
pt ]

50 models,
1 image scale

5 models,
1 image scale

« Shown to be possible for Integral Channel features
— P. Dollar, S. Belongie, Perona. The Fastest Pedestrian Detector in the

West, BMVC 2010.
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http://vision.ucsd.edu/~pdollar/files/papers/DollarBMVC10FPDW.pdf

Recap: VeryFast Classifier Construction

/\ /\
J\J\ J\J\

score = Wiy - h1 + Wy » hz

 Ensemble of short trees, learned by AdaBoost
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magnitude channels
A
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Recap: Convolutional Neural Networks

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INFUT 6@28x28
32x32 S2: f. maps

o = B

C5: layer
120

F6: layer OUTPUT
84 10

Convolutions Subsampling

Fullconrlrection I Gaussian connections
Convolutions  Subsampling Full connection

* Neural network with specialized connectivity structure
— Stack multiple stages of feature extractors

— Higher stages compute more global, more invariant features
— Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Recap: Convolution Layers

- Naming convention:

—=00000
I / WIDTH

DEPTH
32

3

 All Neural Net activations arranged in 3 dimensions
— Multiple neurons all looking at the same input region,

stacked in depth

— Form a single [1 x 1 xdepth] depth column in output volume.
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Recap: Activation Maps

Activations:

CINEREENMCIIN AR RN ES A ETEE NSRS
one filter = one depth slice (or activation map) 5x%5 filters

Actlvatloi
- — o ) |

Activation maps
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Recap: Pooling Layers

Single depth slice
JI1]1 2 4
max pool with 2x2 filters
516 |78 and stride 2 6 | 8
312110 3| 4
11213 | 4
y
» Effect:

— Make the representation smaller without losing too much information
— Achieve robustness to translations
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Recap: R-CNN for Object Detection

Bbox reg || SVMs Classify regions with SVMs

’

A& - rped image regions

Bbox reg || SVMs

”

Bbox reg | | SVMs

Visual Computing Institute | Prof. Dr . Bastian Leibe nm
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Recap: Faster R-CNN

 One network, four losses

Classification Bounding-box
— Remove dependence on loss regression loss
external region proposal
algorlthm' Classification Bounding-box .
loss regression loss Rol pooling

% ro Els L7 ﬁ
— Instead, infer region S // /D/

(p:rﬁﬁosals from same Region Proposal Network

— Feature sharing

feature map

— Joint training L
— Object detection in
a single pass becomes o
possible.

e

A e e e A
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Recap: Mask R-CNN

g L~

/"’/ //
M / s
//// P // P

1 —_— -1
,,// 4 > q %
rd e |

1 . onv 1
171 ©/" Rol Align vl
[/

256 x 14 x 14 256 x 14 x 14

Conv

Classification Scores: C
Box coordinates (per class). 4 * C

Predict a mask for
each of C classes

Cx14 x 14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

Part 20 — Repetition
Slide credit: FeiFei Li
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https://arxiv.org/pdf/1703.06870.pdf

Recap: YOLO / SSD

Input image Divide image into grid
3XHxW

TR

* Idea: Directly go from image to detection scores
« Within each grid cell

— Start from a set of anchor boxes
— Regress from each of the B anchor boxes to a final box
— Predict scores for each of C classes (including background)
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
— Kalman Filters, EKF

— Particle Filters States
* Multi-Object Tracking — e —>
* Visual Odometry
* Visual SLAM & 3D Reconstruction
 Deep Learning for Video Analysis
RWTH
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Recap: Tracking as Inference

* Inference problem

— The hidden state consists of the true parameters we care about,
denoted X.

— The measurement is our noisy observation that results from the
underlying state, denoted Y.

— At each time step, state changes (from X, , to X,) and we get a hew
observation Y,.

* Our goal: recover most likely state X, given
— All observations seen so far.
— Knowledge about dynamics of state transitions

Visual Computing Institute | Prof. Dr . Bastian Leibe
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Recap: Tracking as Induction

« Base case:

— Assume we have initial prior that predicts state in absence of any
evidence: P(X,)

— At the first frame, correct this given the value of Y =y,

 Given corrected estimate for frame ¢:
— Predict for frame t+1
— Correct for frame t+1

ct cC ct

P
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Recap: Prediction and Correction

* Prediction:

P(Xt | Yor+es yt—l): I P(Xt | Xt—l)P(Xt—l | Yor-+es yt—l)dxt—l

\ U\ J
4 N
Dynamics Corrected estimate
model from previous step
e Correction:
Observation Predicted
model estimate

4 2 NS \
p(x 'Y, y ): P(yt | Xt)P(Xt | Yoreos yt—l)
. veeor Y
jP(yt | Xt)P(Xt | Yor-ees yt—l)dxt
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Recap: Linear Dynamic Models

* Dynamics model

— State undergoes linear transformation D, plus Gaussian noise

 Observation model

— Measurement is linearly transformed state plus Gaussian noise

Y, ~ N(Mtxt,th)

Visual Computing Institute | Prof. Dr . Bastian Leibe
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Recap: Constant Velocity (1D Points)

 State vector: position p and velocity v

— (greek letters
X — P: Pe= Pt (At)vt_l e denote noise
t V, V.=V, +¢ terms)
(1 atTpa]
X, = D,X,_; +noise = +Nolse
0 1]v,

« Measurement is position only

Y, = Mx, +noise = [1 O{ P\ noise
Vt
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Recap: Constant Acceleration (1D Points)

 State vector: position p, velocity v, and acceleration a.

« Measurement is position only i

P ] Py = Py + (At)Vt_l + % (At)z a_,+¢& (greek letters
denote noise
X = Ve Vi=Via T (At)a‘t—l +6 terms)
| & a=a,+¢

1At (A [p
X, =DX_+noise=|0 1 At || v,

0 0 1 Ay |

+ noise

y, =Mx +noise=[1 0 0] v, |+noise
\éiosnLizlug;aziuot:]nzg Institute | Prof. Dr . Bastian Leibe B a_t | ( 0 —
Part 20 — Repetition j
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Recap: General Motion Models

« Assuming we have differential equations for the motion
— E.g. for (undampened) periodic motion of a linear spring

d’p
az P
« Substitute variables to transform this into Iiznear system
« Then we have
i Py | Pre = Pres H(AD) Py, +3 (At)° P3iq T € 1 At
X; =| Py Poi = Poyg T (At) P31 +& D=0 1
| Psy Pay =—Pra+6 _—1 0
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Recap: The Kalman Filter

Know corrected state from

previous time step, and all Receive measurement  Know prediction of state,
measurements up to the and next measurement
current one —>Update distribution over
- Predict distribution over current state.
next state. / \
Time update Measurement update
(“Predict”) (“Correct”)

PX Yo Yi) U P(X[Yor - %)

Mean and std. dev.

! Time advances: t++ Mean and std. dev.
of predicted state: of corrected state:
- ~ + +

H; Oy H; Oy
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Recap: General Kalman Filter (>1dim)
PREDICT¢” ‘ CORRECT

_ _ —1
=D’ K =M (MEZ M +2, )
N _ . ~\i “residufl”
>, =D D +%, X =X th(yt -MX, )
N :(I - KtMt)Zt_

More weight on residual
when measurement error
covariance approaches 0.

for derivations,
see F&P Chapter 17.3 Less weight on residual as a

priori estimate error

covariance approaches 0.
Visual Computing Institute | Prof. Dr . Bastian Leibe RMI
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Recap: Kalman Filter — Detalled Algorithm

 Algorithm summary

— Assumption: linear model
X = DiXy1+¢&

y: = Mgx; + 04
— Prediction step
X, = Dtxf_l
2t_ — thj——lDz + Zdt
— Correction step
K, = ;M7 (M,Z; M7 +%,,,)
x; = x; + K (ye — Mix; )
7 = I-K:My) 2/

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 20 — Repetition Institute




Extended Kalman Filter (EKF)

 Algorithm summary

— Nonlinear model
X; = g(Xp_1)+ &

y: = h(xy)+ 6 with the Jacobians
— Prediction step
X, = g(Xj—1) Og(x)
¥, = G Gl + 32, Gy = —— .
Tt —1
— Correction step
K:, = ¥, H/ (H:X H/ +2mt)‘1 H, — oh(x)
N B B 0x |, _ -
X, = X +Kt(yt—h(xt)) ‘
Ej = I-KH;) X,
RWNTH
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
— Kalman Filters, EKF
— Particle Filters

e Multi-Object Tracking

* Visual Odometry

* Visual SLAM & 3D Reconstruction
* Deep Learning for Video Analysis
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Recap: Propagation of General Densities

deterministic drift

A A
pix) plx)

=
=

stochastic diffusion

|
p(x) z p(x)
X X
reactive effect of measurement
65 Visual Computing Institute | Prof. Dr . Bastian Leibe RMI
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Recap: Factored Sampling

Probability

posterior
density

@ weighted

W

>o @> @O .. o State ™

-

 ldea: Represent state distribution non-parametrically
— Prediction: Sample points from prior density for the state, P(X)
— Correction: Weight the samples according to P(Y' | X)

Py [ X )P(Xc] Yo+ Yia)
PO Yoo Vo) = o S = 2
TRl XPOX 1 Yoo e )X
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Recap: Particle Filtering

Many variations, one general concept:

— Represent the posterior pdf by a set of randomly chosen weighted
samples (particles)

Posterior
A

» Sample space

— Randomly Chosen = Monte Carlo (MC)
— As the number of samples become very large — the characterization

becomes an equivalent representation of the true pdf.

Visual Computing Institute | Prof. Dr . Bastian Leibe
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Background: Monte-Carlo Sampling

* Objective: "
— Evaluate expectation of a function f(z) P(z)
w.r.t. a probability distribution p(z).

Blfl = [ f@)p(z)dz
« Monte Carlo Sampling idea I

— Draw L independent samples z®) with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum

| L
; z
T T Z f(z)
=1
— As long as the samples z) are drawn independently from p(z), then

E[f] = E[f]

= Unbiased estimate, independent of the dimension of z!
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Background: Importance Sampling

e |[dea

— Use a proposal distribution ¢(z) from which it is easy to draw samples
and which is close in shape to f.

— Express expectations in the form of a finite sum over samples {z()}
drawn from ¢(z).

Blf) = [ fp(aiz— [ f(Z)g%q(Z)dz

1 E (l)
e

(l)

2

— with importance weights
)
Z
r p(z")

q(zV) -
Visual Computing Institute | Prof. Dr . Bastian Leibe
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Recap: Sequential Importance Sampling

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

n=_0 Initialize
for i = 1:N
Xi ~ q(xt|Xi_1a yt) Sample from proposal pdf
| | < \p (x|
w;, = wz_lp('w| t)}z( t1xi-1) Update weights
q(x¢|x}_1,¥¢)
n=mn-+ ’wi Update norm. factor
end
for i = 1:N
wi — wi/n Normalize weights
end

Visual Computing Institute | Prof. Dr . Bastian Leibe
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Recap: Sequential Importance Sampling

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

end
for

end

X3 ~ q(Xe|xi_1, Y1)

L pylxDpNGIx )

Wy = Wy_q
n=n+w
1 = 1:N
wy = wi /1

Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2
Part 20 — Repetition

Q(XtX%YK

For a concrete algorithm,
we need to define the
importance density g(.|.)!

Slide adapted from Michael Rubinstein
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Initialize

Sample from proposal pdf

Update weights

Update norm. factor

Normalize weights




Recap: SIS Algorithm with Transitional Prior

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

n = Initialize
for i = 1:N
x! ~ p(xe|xt_,) Sample from proposal pdf
wi = wi_p(y:|x?t) Update weights
n=mn-+ ’wi Update norm. factor
end Transitional prior
for : = 1:N q(x¢|x;_1,¥t) = p(Xe|x;_1)
wi = w!/n Normalize weights
end
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Recap: Resampling

Degeneracy problem with SIS

— After a few iterations, most particles have negligible weights.

— Large computational effort for updating particles with very small
contribution to p(x; | y.,)-

* ldea: Resampling

— Eliminate particles with low importance weights and increase the

number of particles with high importance weight.

N 1 N
X, Ww ) — X —
1=1

— The new set is generated by sampling with replacement from the

discrete representation of p(x, | y;.,) such that
Pr {X%* — Xj} = w!
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Recap: Efficient Resampling Approach

* From Arulampalam paper:

Algollthm 2: Resampling Algorithm
[ wj, ¥}Y] = RESAMPLE [fax), wi}l]
+* Inltlallze the CDF: ¢ =10

* FOR ¢ = 2: N,

— Construct CDF: ¢ = -iif:—l—l-w}’:.

END FOR

Start at the bottom of the CDF: ¢i=1
Draw a starting point: ag ~ U0, N7
FOR g = 1: Ng

— Move along the CDF: wu; =y + N7 j—1)
— WHILE 4; > ¢

# ¢ =4+ 1 Basic idea: choose one initial
— END WHILE small random number: deter-
. ! 13 . . .
— Asslgn sample: x:;} fs; ministically sample the rest
- i:igz ;‘T;SEE iy by “crawling” up the cdf.
o END FOR This is O(N)!

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
iti Institute

Part 20 — Repetition

Slide adapted from Robert Collins



Recap: Generic Particle Filter

function [{X@,wi}il} = PF [{Xi_pwiq}il,}’t}
Apply SIS filtering [{xg,wg}fl 1} _ SIS [{x,@;_l,w;ﬁ_l}f; 1 ,yt}
Calculate N,
if N, < Ny,
{xi,wi} | = RESAMPLE |{x},wi}" |
end

* We can also apply resampling selectively
— Only resample when it is needed, i.e., Neff IS too low.
= Avoids drift when the tracked state is stationary.
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Recap: Sampling-Importance-Resampling (SIR)

function [X;] = SIR [X;_1,y:]
A?t — Xt — @
for i = 1:N

Sample X} ~ p(x¢|xt_,)

wi = P(Yt|Xi)
end
for 1 = 1:N

Draw 1 with probability o wz

Add x! to X,
end

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2

Part 20 — Repetition

Slide adapted from Michael Rubinstein
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Generate new samples

Update weights

Resample
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Recap: Sampling-Importance-Resampling (SIR)

function [X;] = SIR [X;_1,y:]
A?t — Xt — @
for i = 1:N

Sample X} ~ p(x¢|xt_,)

wi = P(.Yt|Xi)
end
for 1 = 1:N

Draw 1 with probability o wz

Add x! to X,
end

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2
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Important property:

Particles are distributed
according to pdf from

previous time step.

Particles are distributed
according to posterior

from this time step.

®

Visual Computing
Institute




Recap: Condensation Algorithm

observation
density

AN

.
s
~

drift

diffuse

measure

Start with weighted
samples from previous
time step

Sample and shift
according to dynamics
model

Spread due to
randomness; this is pre-
dicted density P(X{Y,.;)

Weight the samples
according to observation
density

Arrive at corrected density
estimate P(X,|Y,)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for

Slide credit: Svetlana Lazebnik

visual tracking, IJCV 29(1):5-28, 1998
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http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html

Course Outline

 Single-Object Tracking

« Bayesian Filtering
— Kalman Filters, EKF
— Particle Filters

« Multi-Object Tracking
— Introduction
— MHT
— Network Flow Optimization

* Visual Odometry
* Visual SLAM & 3D Reconstruction

» Deep Learning for Video Analysis

79 Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 20 — Repetition Institute




Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
— Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
— Newly visible objects, or just noise?

3. More than one measurement may match a prediction
— Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions
— Which object shall the measurement be assigned to?
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Recap: Mahalanobis Distance

« Gating / Validation volume
— Our KF state of track x; is given b -7 N
the prediction ﬁgk) and covariancez(kl). /@
p, ® /
|
— We define the innovation that measure- . L 4
ment y ; brings to track x; at time k as -

k k k
) =

— With this, we can write the observation likelihood shortly as
(k)| (k) (k)" (k)™ (k)
p(Yj %, )Nexp{ o Vil 2 Vﬂl}
— We define the ellipsoidal gating or validation volume as
k T~ (k)~ k
V() = {¥ly = xS (v —x) <
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Recap: Track-Splitting Filter

* |[dea (1)
— Instead of assigning the measurement that is currently <1

closest, as in the NN algorithm, select the sequence .z§2>

of measurements that minimizes the total Mahalanobis (3)

. H |
distance over some interval! (4) (4)

Zl o o Z2
— Form a track tree for the different association decisions

— Modified log-likelihood provides the merit of a particular
node in the track tree.

— Cost of calculating this is low, since most terms are needed anyway for
the Kalman filter.

* Problem

— The track tree grows exponentially, may generate a very large number
of possible tracks that need to be maintained.
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Recap: Pruning Strategies

* In order to keep this feasible, need to apply pruning

— Deleting unlikely tracks
= May be accomplished by comparing the modified log-likelihood \(k), which
has a x? distribution with kn_ degrees of freedom, with a threshold « (set
according to x? distribution tables).

= Problem for long tracks: modified log-likelihood gets dominated by
old terms and responds very slowly to new ones.

= Use sliding window or exponential decay term.

— Merging track nodes
= |f the state estimates of two track nodes are similar, merge them.
= E.g., if both tracks validate identical subsequent measurements.

— Only keeping the most likely N tracks
= Rank tracks based on their modified log-likelihood.
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
— Kalman Filters, EKF
— Particle Filters

« Multi-Object Tracking
— Introduction
— MHT
— Network Flow Optimization

* Visual Odometry
* Visual SLAM & 3D Reconstruction

» Deep Learning for Video Analysis
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Recap: Multi-Hypothesis Tracking (MHT)

* Ideas Hypotheses at time k-1, | ;o L |Hypotheses at time k

— Instead of forming a track tree, 7 9
keep a set of hypotheses that ————
generate child hypotheses Y (pruning, merging)
based on the associations. B e ol ‘

— Enforce exclusion constraints Hypothesis Generation
between tracks and measure- L ]
ments in the assignment. I

Hypothesis Matriz
v (k)

Observed Features

Predicted Features

— Integrate track generation into
the assignment process.

— After hypothesis generation,
merge and prune the current
hypOtheSIS Set Reaw Sensor Data

Feature Extraction

D. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans. Automatic
Control, Vol. 24(6), pp. 843-854, 1979.
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S O =
S = =
—_ = =
—_ =

* Interpretation

— Columns represent tracked objects, rows encode measurements

— A non-zero element at matrix position (z,7) denotes that measurement
y; Is contained in the validation region of track x..

— Extra column x ., for association as false alarm.

— Extra column x,_, for association as new track.

— Enumerate all assignments that are consis

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2
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Recap: Hypothesis Generation

» Create hypothesis matrix of the feasible associations
X1 X2 XfqXnt
1 0 1 1]

Y1
y2
ys3
Y4

t with this matrix.
RWNTH




Recap: Assignments

Z ] X1 X9 X fa Xnt
Y 0 0 1 0
Y, 1 0 0 0
Y3 0 1 0 0
Y4 0 0 0 1

* Impose constraints

— A measurement can originate from only one object.
= Any row has only a single non-zero value.

— An object can have at most one associated measurement per time step.
= Any column has only a single non-zero value, except for x,, X,

Computer Vision 2
Part 20 — Repetition
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Recap: Calculating Hypothesis Probabilities

* Probabillistic formulation
— It is straightforward to enumerate all possible assignments.

— However, we also need to calculate the probability of each child
hypothesis.

— This is done recursively:

p(QE Y ®)) = p(zM -y k)

p(J)

Bayes k)| 7(k) (k—1) (k) (k=1)
— UP(Y( )|Zj {2 p(5) )p (ZJ Qp(]) )

k k—1 k k—1 k—1
(Y123, 0,0 V(7 105 p(9 )

p(7) p(J)

N J J
/ Y Y Y

Normalization Measurement Prob. of Prob. of
factor likelihood assignment set parent
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Recap: Measurement Likelihood

» Use KF prediction
— Assume that a measurement y(k) associated to a track x; has a

J
Gaussian pdf centered around the measurement prediction Xg )
with innovation covariance 2; )

— Further assume that the pdf of a measurement belonging to a new track
or false alarm is uniform in the observation volume W (the sensor’s

field-of-view) with probability -1,

— Thus, the measurement likelihood can be expressed as

My,
p(Y("“)\Z;.’“),Q(’“,—l)) _ HN( (k). XJ,E(’“)) =5

p(J) Yi

My,
W_(Nfal+N7Lew) HN( (k). XJ, 2(’“))

’L
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Recap: Probability of an Assignment Set

p(Z; 19,5,

p(J)

« Composed of three terms

1. Probability of the number of tracks Ny, Ny Ny,
= Assumption 1: N, , follows a Binomial distribution

k—1 N t - et

where N is the number of tracks in the parent hypothesis

= Assumption 2: N, and N, ., both follow a Poisson distribution

with expected number of events A, ,Wand A, W

new

N N
(NdetaNfa,l, ’new|Q(k 1)) — (th>p{dvedft(l_pdet)(N Nget)

'M(Nfa,l; Afct,lT/‘/) ’ /J(an,e'w; A'n,ewT/I/)
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Recap: Probability of an Assignment Set

2. Probability of a specific assignment of measurements
= Suchthat M; = Ny, + Ny + N, holds.

new

= This is determined as 1 over the number of combinations

M, M, — Nget My — Nget — Nygi
Ndet Nfal Nnew
3. Probability of a specific assignment of tracks

= Given that a track can be either detected or not detected.
= This is determined as 1 over the number of assignments

N1 N — N
(N_Ndet)! Ndet

= When combining the different parts, many terms cancel out!
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
— Kalman Filters, EKF
— Particle Filters

« Multi-Object Tracking
— Introduction
— MHT
— Network Flow Optimization

* Visual Odometry
* Visual SLAM & 3D Reconstruction

» Deep Learning for Video Analysis
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Recap: Linear Assignment Formulation

« Form a matrix of pairwise similarity scores

« Example: Similarity based on motion prediction

— Predict motion for each trajectory and assign scores for each
measurement based on inverse (Mahalanobis) distance, such

that closer measurements get higher scores. ail  ai?

1 |3.0

trackl Ir-- ] 2 [ 5.0
) g 3 1.0

0 4 9.0 \
] 5 3.0
,”A,’
A,
track2

— Choose at most one match in eacn row ana column to maximize sum of

scores
RWTH

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 o Visual Computing
Institute

Part 20 — Repetition

Slide credit: Robert Collins



Recap: Linear Assignment Problem

 Formal definition

N M
— Maximize Z Z Wi Zi;
i=1 j=1
subject to zj:l i Le=52..,N Those constraints
> .12 =1,7=12,...,M  ensure that Zis a

ermutation matrix
zij € 10,1} P

./

— The permutation matrix constraint ensures that we can only match up
one object from each row and column.

N M
— Note: Alternatively, we can minimize arg min § : § :quj Zij
cost rather than maximizing weights. Zij
1=1 1=
94 Visual Com.p.uting Institute | Prof. Dr . Bastian Leibe ( 0 Rm
a0 Repeion

Slide adapted from Robert Collins



Recap: Optimal Solution

Greedy Algorithm

— Easy to program, quick to run, and yields “pretty good” solutions in
practice.

— But it often does not yield the optimal solution

Hungarian Algorithm

— There is an algorithm called Kuhn-Munkres or “Hungarian” algorithm

specifically developed to efficiently solve the linear assignment
problem.

— Reduces assignment problem to bipartite graph matching.
— When starting from an Nx N matrix, it runs in O(N?).

= If you need LAP, you should use it.
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Recap: Min-Cost Flow
-3
CORUN
-3
0 i) 0

(s @ @
0 3 0

4

5
1

« Conversion into flow graph
— Transform weights into costs ¢;; = & — W;;
— Add source/sink nodes with O cost.

— Directed edges with a capacity of 1.
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Recap: Min-Cost Flow

2 0 [-3]
@ ® '@
-3
0
4

5
1

« Conversion into flow graph
— Pump N units of flow from source to sink.
— Internal nodes pass on flow (2. flow in = 2. flow out).
= Find the optimal paths along which to shi(> the flow.
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Recap: Min-Cost Flow

[-3]

« Conversion into flow graph
— Pump N units of flow from source to sink.

— Internal nodes pass on flow (2. flow in = 2. flow out).

= Find the optimal paths along which to ship the flow.
(© —— | ™
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Recap: Using Network Flow for Tracking

« Complication 1

— Tracks can start later than framel (and end earlier than frame4)
— Connect the source and sink nodes to all intermediate nodes.

Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2 ( 0 Visual Computing
Part 20 — Repetition

Institute
Slide credit: Robert Collins




framel

33\

« Complication
— Trivial solution: zero cost flow!
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Recap: Network Flow Approach

Solution: Divide
each detection
Into 2 nodes

(uj;,'vj) (V,, u:-) (s, u4;) & :v;, 1)
Observation edges Transition edges Enter/exit edges

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking
using Network Flows, CVPR’08.
RWTH
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vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf

Recap: Min-Cost Formulation

* Objective Function

T = arg71r_nin Z Cinifini T Z Ci outfiout
(/ 7

+2.Cijfi;+ 2. Cifs
1,7 7

* Subject to
— Flow conservation at all nodes

f’lln,i + Z fj,q; p— fz — fout,i + Z fi,j V’L
J J
— Edge capacities

fi <1
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Min-Cost Formulation

L : IN
 Objective Function -
T* = arg;nin Z Cin,ifz'n,i + Z Ci,outfi,outl
1 1

+ C’ |+ C . Likelihood of the
Z “J fm Z ifi detection
TRANSITION | %J v

« Equivalent to Maximum A-Posteriori formulation

T+ = argmax P(O@"T)IP(T) Independence
T s assumption
+
P(T) — 11 P(Tk) Markov

| N o TpeT
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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
— Introduction
— MHT
— Network Flow Optimization

* Visual Odometry
— Sparse interest-point based methods
— Dense direct methods

* Visual SLAM & 3D Reconstruction

» Deep Learning for Video Analysis
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Recap: What is Visual Odometry ?

Visual odometry (VO)...

e ... Is a variant of tracking

— Track motion (position and orientation) of the camera from its images
— Only considers a limited set of recent images for real-time constraints

e ... also involves a data association
problem

— Motion is estimated from corresponding

Interest points or pixels in images, or b /
p p g y '//4

correspondences towards a local 3D y
. P
reconstruction
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Recap: Direct vs. Indirect Methods

* Direct methods

— formulate alignment objective in terms of photometric error
(e.g., intensities)

oL |1,6) = E(€) = [ ()~ T, ) d

* Indirect methods

— formulate alignment objective in terms of reprojection error of
geometric primitives (e.g., points, lines)

p(Yo | Y1,6) wepp  E(€ me— W(y2,€)l

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 20 — Repetition i

Institute
Slide credit: Jorg Stlickler




Recap: Point-based Visual Odometry Pipeline

« Keypoint detection and
local description (CV I)

* Robust keypoint
matching (CV 1)

 Motion estimation

— 2D-to-2D: motion from
2D point correspondences

— 2D-t0-3D: motion from
2D points to local 3D map

— 3D-to-3D: motion from
3D point correspondences
(e.qg., stereo, RGB-D)

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2
Part 20 — Repetition

Slide credit: Jorg Stlickler

Input Images

Extract and

Match Keypoints

Estimate Motion

from Keypoint
Matches

Imaages from Jakob Engel



Recap: Motion Estimation from Point Correspondences

e 2D-t0-2D
— Reproj. error' N
B(TX) = 2130 = m Gl + [Femr = (T

— Introduced linear algorithm: 8-point

e 2D-t0-3D N
— Reprojection error:  E(T,) = ) |lye; — 7(T:X;)|);

— Introduced linear algorithm: DLT PnP T

e 3D-t0-3D

N
— Reprojection error: £ (T!!) Z % — T

2

— Introduced linear algorithm: Arun‘s method

<
. B
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Recap: Eight-Point Algorithm for Essential Matrix Est.

 First proposed by Longuet and Higgins, 1981

« Algorithm:
1. Rewrite epipolar constraints as a linear system of equations
VEy; = a,E;,=0 =9 AE, =0 A=(a{,..,ay)"

using Kronecker producta; = §; ® §; and E; = (ey1, €12, €13, ., €33) "

2. Apply singular value decomposition (SVD) on A = U,SAV, and
unstack the 9th column of V, into E.

3. Project the approximate E into the (normalized) essential space:
Determine the SVD of E = U diag(o4, 0,,05)V' with U,V € SO(3)

and replace the singular values o; = 0, = g3 with 1,1,0 to find

E = U diag(1,1,0) VT
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Recap: Eight-Point Algorithm cont.

* Algorithm (cont.):

— Determine one of the following 2 possible solutions that intersects the
points in front of both cameras:

R = UR} (ig) vl t=URy, (ig) diag(1,1,0)UT

* A derivation can be found in the MASKS textbook, Ch. 5

« Remarks

— Algebraic solution does not minimize geometric error
— Refine using non-linear least-squares of reprojection error

— Alternative: formulate epipolar constraints as ,distance from epipolar
line” and minimize this non-linear least-squares problem
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Recap: Eight-Point Algorithm cont.

Normalized essential matrix: ||E|| = HfH —1
 Linear algorithms exist that require only 6 points for general motion

* Non-linear 5-point algorithm with up to 10 (possibly complex)
solutions

 Points need to be in ,general position®: certain degenerate
configurations exists (e.g., all points on a plane)

« No translation, ideally: ‘|€‘| =0=||E| =0

 But: for small translations, signal-to-noise ratio of image parallax
may be problematic: ,spurious” pose estimate
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Recap: Relative Scale Recovery

* Problem:

— Each subsequent frame-pair gives another solution for the reconstruction
scale

Solution:
— Triangulate overlapping points Y;_o, Y;_1, Y; for current and last frame

pair
= X941, Xe—11

— Rescale translation of current relative pose estimate to match the

reconstruction scale with the distance ratio between corresponding point
pairs

. ”Xt—Z,t—l,i — Xt—2,t—1,j

2
Tij =

HXt—l,t,i — Xt—1.t,j |2

— Use mean or robust median over available pair ratios
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Algorithm: 2D-to-2D Visual Odometry

Input: Image sequence [,
Output: aggregated camera poses T

Algorithm:
For each current image ;. :

1.
2.

3.

4.

Extract and match keypoints between /;,_; and I,
Compute relative pose T;~' from essential matrix between
Ir—1, 1

Compute relative scale and rescale translation of T}~
accordingly

Aggregate camera pose by T; = T,_; T/
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Recap: Triangulation

Goal: Reconstruct 3D point X = (z.y.2,w) €P*® from 2D image
observations {y,...,y~} for known camera poses {T,,..., Ty}

Linear solution: Find 3D point such that reprojections equal its
projections

11 T+1r12Y+1r132+t, w

I =\ r31r+r32y+ryzzt+t.w
Yi = W(Tix) =

21T+ 120Y+razz+tyw

r31T+r32y+r3zzt+t.w

— Each image provides one constraint y; —y. =0

— Leads to system of linear equations Ax = 0, two approaches:
= Set w =1 and solve nonhomogeneous system
= Find nullspace of A using SVD (this is what we did in CV 1)

« Non-linear solution: Minimize least squares reprojection error

(more accurate) N
. 112
min ¢ Y [lyi = vill;
X
=1
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Recap: Direct Linear Transform for PnP

« Goal: determine projection matrix P=(Rt)eR>* = | P,

« Each 2D-to-3D point correspondence
3D: Szl = (;U’iay’ia Z’iawi)—r S IEDS 2D: yz — (‘riay:aw:)—r = [ED2
gives two constraints

T T P/

1< 1S

0  —wix; X, Pl | =0
wix] 0 —aix] 2

P;
through y,; x (Px;) =0

P,
 Form linear system of equation Ap =0 with p:= P; c R’
from N >6 correspondences P,

« Solve for p: determine unit singular vector of A corresponding to
Its smallest eigenvalue
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Algorithm: 2D-to-3D Visual Odometry

Input: Image sequence /.,
Output: aggregated camera poses T,

Algorithm:
Initialize:
1. Extract and match keypoints between I, and I;

2. Determine camera pose (Essential matrix) and
triangulate 3D keypoints X

For each current image i :
1. Extract and match keypoints between /-1 and I
2. Compute camera pose T'x using PnP from 2D-to-3D matches

3. Triangulate all new keypoint matches between [;_; and I,
and add them to the local map Xx
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Recap: 3D Rigid-Body Motion from 3D-to-3D Matches

» [Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987]
» Corresponding 3D points, N > 3

X1 = {Xt—1,17 e 7Xt—1,N} X = {Xt,h e 7Xt,N}

» Determine means of 3D point sets

1 o 1
Ky 1 = N ;Xt—l,i My = N ;Xi,i

 Determine rotation from
N
A= Z (Xt—l - ﬂt—1) (x¢ — ’J’t)T A=USV' R, = vu'
1=1

- Determine translationas t,_, = u, — Rl_,u, |
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Algorithm: 3D-to-3D Stereo Visual Odometry

Input:  stereo image sequence 1., I,
Output: aggregated camera poses Ty.

Algorithm:

For each current stereo image I, 1} :

1. Extract and match keypoints between I, and I! |,
2. Triangulate 3D points X, between I, and I,

3. Compute camera pose T;~' from 3D-to-3D
point matches X, to X;_,

4. Aggregate camera poses by T, =T, T} !
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Recap: Keypoint Detectors

- Corners * Blobs
— Image locations with locally — Image regions that stick out from
prominent intensity variation their surrounding in intensity/texture
— Intersections of edges — Circular high-contrast regions
- Examples: Harris, FAST « E.g.: LoG, DoG (SIFT), SURF

 Scale-selection: Harris-Laplace « Scale-space extrema in LoG/DoG

Harris Corners
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Recap: RANSAC

« RANdom SAmple Consensus algorithm for robust estimation

* Algorithm:
Input: data D , s required data points for fitting, success probability 7,
outlier ratio «

Output: inlier set
1. Compute required number of iterations N =

2. For N iterations do:
1. Randomly select a subset of s data points
2. Fit model on the subset
3. Count inliers and keep model/subset with largest number of inliers

3. Refit model using found inlier set

log (1 —p)
log (1 — (1 —¢))
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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
— Introduction
— MHT, (JPDAF)
— Network Flow Optimization

* Visual Odometry
— Sparse interest-point based methods
— Dense direct methods

* Visual SLAM & 3D Reconstruction

» Deep Learning for Video Analysis
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Recap: Direct Visual Odometry Pipeline

« Avoid manually designed
keypoint detection
and matching Input Images

* Instead: direct image
alignment

E(E) - / ()~ T ()| d

« Warping requires depth
— RGB-D Estimate Motion
through Direct

— Fixed-baseline stereo : ih
Image Alignment  “ 4

— Temporal stereo, tracking
and (local) mapping
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Recap: Direct Image Alignment Principle

* |dea
— If we know the pixel depth, we can ,simulate”
an image from a different viewpoint

— ldeally, the warped image is the same as the
Image taken from that pose:

I (y) = L (7 (T(§) Z1(y)y))

111

— Estimate the warp by minimizing the residuals (similar to LK alignment)

B&) =) dtalis

- r(y, &) =1 (y) — L (7 (T(&)Z:(y)y))
yel

= Non-linear least-squares problem (use second-order tools)

— Important issue in practice: How to parametrize the poses?
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Recap: Representing Motion using Lie Algebra se(3)

Lie algebra & := ( :': ) c R°
€ € se(3)
w e R’

/log v € R’

I € SE(3)

Lie group
T € SE(3)

SE(3) is a smooth manifold, i.e. a Lie group

Its Lie algebra se(3) provides an elegant way to parametrize poses for
optimization

Its elements & € se(3) form the tangent space of SE(3) at identity

The se(3) elements can be interpreted as rotational and translational
velocities (twists)
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Recap: Exponential Map of SE(3)

o Lie algebra
£ € se(3)

/ log

I € SE(3)

Lie group
T € SE(3)

* The exponential map finds the transformation matrix for a twist:

(= (0 %)

eXp(&'}):I_|_Sin|w|A 1—COS|(U|&.32 A:I—|—1_COS‘W|C3—|— ’w‘_Sin’w‘QQ
w] w|? ol ol
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Recap: Logarithm Map of SE(3)

o Lie algebra
exp/ § € se(3)
Lie group IeSE@3) / log

T € SE(3)

* The logarithm maps twists to transformation matrices:

log (T) — ( logéR) A;t )

og(R) = —“_(R-R")  |w| = cos! (tr(R)_l)

~ 2sin |w)
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Recap: Working with Twist Coordinates

* Let’s define the following notation:

O —W3 Wo (25 v
— Inversion of hat operator: f”‘f’B ! _8’ ! :’ = (w1 wo w3 vy v v3)"
—wy Wy v3
() 0 0 0
— Conversion: £(T) = (log(T))", T(€) = exp()
_ Pose inversion: g =1log(T(&)") = ¢

— Pose concatenation: £, @ &, = (log (T (&,) T (£))))”

— Pose difference: & 0&, = (log (T (&) T (&))"
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Recap: Optimization with Twist Coordinates

« Twists provide a minimal local representation without singularities

« Since SE(3) is a smooth manifold, we can decompose transformations
In each optimization step into the transformation itself and an
Infinitesimal increment

T (&) =T (&) exp (3¢) = T (56 0 €)

« We can then optimize an energy function E(¢;, 6¢) in order to estimate
the pose increment §¢, e.g., using Gradient descent

08" = 0 — Vs E(E;, 08)

T (&) = T(&)exp (3€)
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Algorithm: Direct RGB-D Visual Odometry

Input: RGB-D image sequence [y, Zo.
Output: aggregated camera poses Ty

Algorithm:
For each current RGB-D image I, Z;. :
1.

Estimate relative camera motion T’,Z_l towards the previous RGB-D
frame using direct image alignment

Concatenate estimated camera motion with previous frame camera
pose to obtain current camera pose estimate T}, = Tk._lTﬁ_l
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
« Multi-Object Tracking

* Visual Odometry

— Sparse interest-point based methods
— Dense direct methods

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
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Recap: Definition of Visual SLAM

* Visual SLAM

— The process of simultaneously estimating the egomotion of an object and
the environment map using only inputs from visual sensors on the object

 Inputs: images at discrete time steps t,

— Monocular case: Set ofimages {0t = {lo, ..., It}
— Stereo case: Left/right images Ié;t = {Ié, . ,Ié} L, =1, I
— RGB-D case: Color/depth images lo: = {lo,..., It} , Zox ={Z0,.... Z¢}

— Robotics: control inputs U;.;

* Output:
— Camera pose estimates T;€ SE(3) in world reference frame.
For convenience, we also write &, = &(T;)

— Environment map M
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Recap: Map Observations in Visual SLAM

With Y; we denote observations of the environment map in image I, e.g.,

— Indirect point-based method: Y, = {ym, ...,yt,N} (2D or 3D image points)
— Direct RGB-D method: Y, ={I;, Z:} (all image pixels)

* Involves data association to map elements M = {mq, ..., mg}
— We denote correspondences by c¢,; =j, 1<i<N, 1<j<S
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Recap: Probabilistic Formulation of Visual SLAM

« SLAM posterior probability: » (&, M | Yo, Us.)
 Observation likelihood: p (Y| &, M)

« State-transition probability:  p (¢, 1 &,_,,U;)
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Recap: Online SLAM Methods

« Marginalize out previous poses

£taM ’ thaUlt)

[ [ o€ Yo Ui de, e

* Poses can be marginalized individually
INn a recursive way

e Variants:

— Tracking-and-Mapping: Alternating pose and map estimation
— Probabilistic filters, e.g., EKF-SLAM
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Recap: EKF SLAM

« Detected keypoint y; in an image observes ,landmark”

position m; inthe map M = {m,, ..., mg}.

* |dea: Include landmarks into state variable
( 3 \ ( 2iee 2t gm,

my | Et,m1£ 231!5,m1n'11

\ m.t,S ) \ Et,;nsg’ Zt,n.lgml

_ Zt,{g" Zt,ﬁm
Et,mg Et,mm
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Recap: 2D EKF-SLAM State-Transition Model

e State/control variables
& = (¢ ye Qt)T my ;= (1. 'm"t;j-.y)T

T T
w = (v we) = (vlly flelly)

State-transition model

— Pose:
ét — J¢ (ét—lt uf) + €¢.t €ct ™~ N (0 Edt;f)
Tiq —i—‘i sin#;_q1 + i—i sin(fy + wy At)
ge(& . u) = | Y- | + l—i costy_1 — l—i cos(;, + w,At)
9t—1 Lo'tAt
— Landmarks: m; = gm(Mmy_q) =my_

— Combined:
Xt = Q(Xt—h Ut) + €, € ~ N(Oa Zdt) Q(Xt—l; U—t)
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Recap: 2D EKF-SLAM Observation Model

e State/measurement variables

Yt = (dt (f)t)T my ; = (T??-t,j,;r T??-t,j,y)T

Observation model:

Yt = h(fta mt,q) + 0¢ 0y ~ N (O- Emt)

rel
( Hmt,Ct 2 )
rel rel
ata:llz (mt,Ct,y7 mt,Ct,CC)

myf), = R(=0,) (mye, — (v ) ")

h(£t7 mt,ct)
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Recap: State Initialization

* First frame:

— Anchor reference frame at initial pose
— Set pose covariance to zero

* New landmark:

— Initial position unknown
— Initialize mean at zero

— Initialize covariance to infinity (large value) X

Slide credit: Jorg Stlickler
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Course Outline

 Single-Object Tracking

« Bayesian Filtering
« Multi-Object Tracking

* Visual Odometry

— Sparse interest-point based methods
— Dense direct methods

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
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Recap: Full SLAM Approaches

 SLAM graph optimization:
— Joint optimization for poses and
map elements from image

observations of map elements
and control inputs

* Pose graph optimization:
— Optimization of poses from relative N

pose constraints deduced from the
Image observations

— Map recovered from the optimized
poses
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Pose Graph Optimization

« Optimization of poses
— From relative pose constraints deduced from the image observations
— Map recovered from the optimized poses

* Deduce relative
constraints between
poses from image
observations, e.g.,

— 8-point algorithm
— Direct image alignment
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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
* Visual Odometry

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
— CNNs for video analysis
— CNNs for motion estimation
— Video object segmentation
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Recap: Recurrent Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt

* Feed-forward networks
— Simple neural network structure: 1-to-1 mapping of inputs to outputs

* Recurrent Neural Networks
— Generalize this to arbitrary mappings
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Recap: Long Short-Term Memory (LSTM)

~ N N )
—>—® © T > —>
A 1 4 % A
Iclflltlrlltalnhlljrl
\I J—bql /b\l )—>

Neural Network Pointwise Vector
* LSTMS Layer Operation Transfer Concatenate Copy

— Inspired by the design of memory cells
— Each module has 4 layers, interacting in a special way.
— Effect: LSTMs can learn longer dependencies (~100 steps) than RNNs
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Image Tagging

« Simple combination of CNN and RNN
— Use CNN to define initial state h, of an RNN.

— Use RNN to produce text description of the image.
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Recap: Video to Text Description

~ CNN
CNN - Object  gutputs LSTMs

RawFrames pretrained _ — |
! |
— [
O L L
O — [
! !
Rl —
! !
Our LSTM network i1s connected to a — A
CNN for RGB frames or a ! e
CNN for optical flow images. L S o —=mMan
Flow images ~ ~__ | i s B is
[ -
| OO : cutting
— d
| © : ] T
I
| CNN-Action! L= __[pottle
:_ o ______prefrained |_<eos>
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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
* Visual Odometry

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
— CNNs for video analysis
— CNNs for motion estimation
— Video object segmentation
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Recap: Learning Similarity Functions

* Siamese Network

— Present the two stimuli to two
iIdentical copies of a network
(with shared parameters)

— Train them to output similar
values if the inputs are
(semantically) similar.

» Used for many matching tasks
— Face identification
— Stereo estimation
— Optical flow
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Recap: Metric Learning — Contrastive Loss

« Mapping an image to a metric embedding space
— Metric space: distance relationship = class membership

/
o2
1£(2) — f(zs)] =0 ;”
%o
1£(@) - f@_)| = m T
o ©

Yi et al., LIFT: Learned Invariant Feature Transform, ECCV 16
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Recap: Metric Learning — Triplet Loss

 Learning a discriminative embedding

— Present the network with triplets of examples N
Negative Positive

— Apply triplet loss to learn an embedding () that éoups the positive
example closer to the anchor than the negative one.

| (%) — f(a:f)né < |f@?) = f=M)3

Negative

Anchor LEARNING
— Used Negative ntification

Anchor
Positive Posmve

150 Visual Computing Institute | Prof. Dr . Bastian Leibe lel
Computer Vision 2 0 Visual Computing
Part 20 — Repetition Institute




Recap: FlowNet — FlowNetSimple Design

FlowNetSimple

« Simple initial design
— Simply stack two sequential images together and feed them through
the network
— In order to compute flow, the network has to compare image patches
— But it has to figure out on its own how to do that...
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Recap: FlowNet — FlowNetCorr Design

FlowNetCorr

 Correlation network
— Central idea: compute a correlation score between two feature maps

c(x1,x2) = Y (fi(x1 +0),fa(x2 + 0))
oc|—k,k] x[—k,k]|

— Then refine the correlation scores and turn them into flow predictions
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Recap: FlowNet — Flow Refinement

* upsampled

* Flow refinement stage (both network designs)
— After series of conv and pooling layers, the resolution has been reduced

— Refine the coarse pooled representation by upconvolution layers
(unpooling + upconvolution)

— Skip connections to preserve high-res information from early layers
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Recap: FlowNet 2.0 Improved Design

lmeage 1 | -, Image 1 | -

Warped Warped
FlowNet(C FlowXNetS
limage 2 linage 2

g Large Displacement JEr I PN RS Large Displacement JEST I yee

FlowNetS Flow

Magnitudd %

Image 1

Image 2 Brightness

Error

Brightness| )
Error

Hrightness
Error

Image 1 | ——— >- Fusion G 3 Flow

Flow

Image 1 Mngnitude
Flow

Image 2 Brightness| _/
Error

o Stacked architecture

— Several instances of FlowNetC and FlowNetS stacked together to
estimate large-displacement flow

— Sub-network specialized on small motions
— Fusion layer
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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
* Visual Odometry

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
— CNNs for video analysis
— CNNs for motion estimation
— Video object segmentation
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Recap: Video Object Segmentation

Object Tracking

Object Segmentation Video Object Segmentation
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Any More Questions?

Good luck for the exam!
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