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Course Outline

 Single-Object Tracking
« Bayesian Filtering

« Multi-Object Tracking
* Visual Odometry

* Visual SLAM & 3D Reconstruction
— Online SLAM methods
— Full SLAM methods

* Deep Learning for Video Analysis
— CNNs for video analysis
— Optical flow
— Video object segmentation
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Topics of This Lecture

* Recap: Full SLAM methods

 CNNs for Video Analysis

— Motivation
— Example: Video classification

* CNN + RNN
— RNN, LSTM
— Example: Video captioning

« Matching and correspondence estimation
— Metric learning
— Correspondence networks
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Recap: Full SLAM Approaches

 SLAM graph optimization:
— Joint optimization for poses and
map elements from image

observations of map elements
and control inputs

* Pose graph optimization:
— Optimization of poses from relative N

pose constraints deduced from the
Image observations

— Map recovered from the optimized

poses
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Pose Graph Optimization

« Optimization of poses
— From relative pose constraints deduced from the image observations
— Map recovered from the optimized poses

* Deduce relative
constraints between
poses from image
observations, e.g.,

— 8-point algorithm
— Direct image alignment
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Pose Graph Optimization Example

Dense Visual SLAM
for RGB-D Cameras

Christian Kerl, Jurgen Sturm,
DERICINGCEINEES

Computer Vision and Pattern Recognition Group
Department of Computer Science
Technical University of Munich

Kerl et al., Dense Visual SLAM for RGB-D Cameras, IROS 2013
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https://jsturm.de/publications/data/kerl13iros.pdf

Topics of This Lecture

 CNNs for Video Analysis

— Motivation
— Example: Video classification
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Video Analysis with CNNs
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» Modeling perspective
— What architecture to use to best capture temporal patterns?

« Computational perspective
— Video processing is expensive!
— How to reduce computation cost without sacrificing accuracy
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Large-Scale Video Classification with CNNs

 Architecture
— Different ways to fuse features from multiple frames

Single Frame Late Fusion Early Fusion  Slow Fusion
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Large-Scale Video Classification with CNNs

« Computational cost
— Reduce spatial dimension to reduce model complexity
— Multi-resolution: low-res context + high-res foveate
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Topics of This Lecture

* CNN + RNN
— RNN, LSTM
— Example: Video captioning

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 17 — CNNs for Video Analysis Institute




Recap: Recurrent Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt

* Feed-forward networks
— Simple neural network structure: 1-to-1 mapping of inputs to outputs

* Recurrent Neural Networks
— Generalize this to arbitrary mappings
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Recap: RNNs

 RNNSs are regular NNs whose
hidden units have additional
forward connections over time.

— You can unroll them to create
a network that extends over
time.

— When you do this, keep in mind
that the weights for the hidden
units are shared between
temporal layers.
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Extension: Long Short-Term Memory (LSTM)
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Neural Network Pointwise Vector
* LSTMS Layer Operation Transfer Concatenate Copy

— Inspired by the design of memory cells
— Each module has 4 layers, interacting in a special way.
— Effect: LSTMs can learn longer dependencies (~100 steps) than RNNs

14 Visual Computing Institute | Prof. Dr . Bastian Leibe Rm
Computer Vision 2 0 Visual Computing
Part 17 — CNNs for Video Analysis Institute

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: RNNs for Text Generation

 RNN for text generation
10,001D class scores

(Softmax over 10k
y0 y1 y2 y3 Y4 | <— words and a special
<END> token)
T Y T T Y ya = Whyhy
Hidden layer

hO —> h1 | h2 —| h3 || h4

<«— (e.g., 500D vectors)

h4 — INax {0, Wth4

A N

x0 X1 X2 X3 x4

<START> iicatﬂ “Sat” iionﬂ h‘.matﬂ
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences yO
would give us a
language model. T
* |.e., away to
predict hO
p(next word |
previous words) I
X0

<START=>
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences yO
would give us a
language model. T

 |.e., away to
Y hO

predict samplel!
p(next word |
previous words) I
x0 X1
<START> “cat”
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Recap: RNNs for Text Generation

 Training this on a
lot of sentences y0 y1
would give us a
language model. T T
* |l.e., away to
predict hO h
p(next word |
previous words) I I
XO X1
<START> “Cat”
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Recap: RNNs for Text Generation

 Training this on a
lot of sentences y0 y
would give us a
language model. T T

* |.e., away to
o ., sample!
predict hO h1 P

p(next word |

previous words) I I

%0 X1 X2

<START> “ Cat S at

n 14 n
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences y0 y y2
would give us a
language model. T T T

* |.e., away to

predict hO —=| h1 —> h2

p(next word |

previous words) T T I

X1 X2
x0
T :ccatn ::Satn
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences y0 y y2
would give us a sample!
language model. T T T

* |.e., away to

predict hO = h1 == h2

p(next word |

previous words) x I I

X1 X2 X3
XO 1 ” 1 ” 7 ”
cat sat on
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences yO y1 y2 y3
would give us a
language model. T T T T
* |.e., away to
predict hO —{ h1 —{ h2 —{ h3
p(next word |

previous words) I I I I

X X2 X3
XO 1 n 1 n 1 ”
cat sat on
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Recap: RNNs for Text Generation

» Training this on a sample!
lot of sentences yO y1 y2 y3
would give us a
language model. T T T T
* |.e., away to
predict hO —{ h1 —{ h2 —{ h3
p(next word |

previous words) I I I I |

%0 X X2 X3 x4
T ::Catu ::Satu ::Onn umat::
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Recap: RNNs for Text Generation

* Training this on a
lot of sentences yO y1 y2 y3 y4
would give us a
language model. T

* |.e., away to
oredict hO > h1 —> h2 —> h3 — h4

p(next word |

it T T T T ]

%0 X1 X2 X3 x4

<START> ::Catu ::Satu uonu “mat“
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Applications: Image Tagging

« Simple combination of CNN and RNN
— Use CNN to define initial state h, of an RNN.

— Use RNN to produce text description of the image.
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Applications: Image Tagging

« Setup

— Train on corpus of images
with textual descriptions

— E.g. Microsoft CoCo
= 120k images
= 5 sentences each
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a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

this dirt bike rider is smiling and raising his fist in triumph.
a man riding a bicycle while pumping his fist in the air.

a mountain biker pumps his fist in celebration.

O QR 4

NS

( 0 Visual Computing
Institute



Results: Image Tagging

.g_, Ne s B

a cow is standing in the middle of a street
logprob: -8.84

i iﬁﬂ%}j@;agﬁfg
a group of people standing & Wy e
around a room with ay
remotes

logprob: -9.17

oung boy is hol
baseball bat
logprob: -7.61

ding a

Spectacular results!
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Results: Image Tagging

a baby laying on a bed with a stuffed bear a cat is sitting on a couch with a remote control
logprob: -8.66

logprob: -12.45

a young boy is holding a
baseball bat
logprob: -7.65

« Wrong, but one can still see why those results were
selected...
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Application: Video to Text Description

29

CNN

Raw Frames  pretrained

Our LSTM network 1s connected to a

CNN for RGB frames or a

CNN for optical flow images.

e — - - ———

iFlow images
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Video-to-Text Results

Correct descriptions.

. B ' 2=, J + Lo
S2VT: A man is doing stunts on his bike.

Relevant but incorrect
descriptions.

e A i
S2VT: A small bus is running into a building.

S2VT: A man is shooting a gun at a target.

30
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S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A man is spreading butter on a tortilla.

®

Irrelevant descriptions.

S2VT: A black clip to walking through a path.
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Topics of This Lecture

« Matching and correspondence estimation
— Metric learning
— Correspondence networks
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Learning Similarity Functions

* Siamese Network

— Present the two stimuli to two
iIdentical copies of a network
(with shared parameters)

— Train them to output similar
values if the inputs are
(semantically) similar.

» Used for many matching tasks
— Face identification
— Stereo estimation
— Optical flow
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Metric Learning: Contrastive Loss

« Mapping an image to a metric embedding space
— Metric space: distance relationship = class membership

/
o2
1£(@) — F(zs)] =0 éf +
®%e
1£(@) - F(a_)|| = m r
o ©
@

Yi et al., LIFT: Learned Invariant Feature Transform, ECCV 16
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Metric Learning: Triplet Loss

 Learning a discriminative embedding

— Present the network with triplets of examples N
Negative Positive

— Apply triplet loss to learn an embedding () that éoups the positive
example closer to the anchor than the negative one.

| (%) — f(a:f)né < |f@?) = f=M)3

Negative
Anchor LEARNING
= Used Negative :ntification
Anchor
Positive Posﬂwe
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Patch Normalization with Spatial Transformer Nets

« Patch Normalization
— Key component of local feature matching
— Finding the scale and rotation
— Invariant to perspective transformation

« Spatial Transformer Network - )

— Adaptively apply transfomation

m;— m >0>T /
|_> l Scale
O g ® T

N\ Rotation

[Spatial Transformer Network]
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Universal Correspondence Network

« Computing a patch descriptor

oloe T > > E;

A > A >4 N vy
V V

Fully Convolutional NN  Convolutional Spatial Transformer L2-Normalization
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Universal Correspondence Network

« Siamese architecture for matching patches
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Universal Correspondence Network

« UCN Training
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Semantic Correspondences with UCN

Ground truth UCN VGG Conv4
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Exact Correspondences with UCN (Disparity Estimation)
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