Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
 - Introduction
 - MHT, (JPDAF)
 - Network Flow Optimization
- Visual Odometry
 - Sparse interest-point based methods
 - Dense direct methods
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Topics of This Lecture

- **Point-based Visual Odometry**
 - Recap: 2D-to-2D Motion Estimation
 - 2D-to-3D Motion Estimation
 - 3D-to-3D Motion Estimation
 - Further Considerations

- **Direct Methods**
 - Direct image alignment
 - Pose parametrization
 - Lie group se(3) and the exponential map
 - Optimization considerations

Recap: What is Visual Odometry?

Visual odometry (VO) is a variant of tracking.

- Track motion (position and orientation) of the camera from its images.
- Only considers a limited set of recent images for real-time constraints.

- Also involves a data association problem.

- Motion is estimated from corresponding interest points or pixels in images, or by correspondences towards a local 3D reconstruction.

Recap: Direct vs. Indirect Methods

- **Direct methods**
 - Formulate alignment objective in terms of photometric error
 - Introduce linear algorithm: 8-point

- **Indirect methods**
 - Formulate alignment objective in terms of reprojection error of geometric primitives (e.g., points, lines)
 - Introduce linear algorithm: DLT PnP
 - Introduce linear algorithm: Ankin's method

Motion Estimation from Point Correspondences

- **2D-to-2D**
 - Reproj. error: $E(Y, X) = \sum_{i} |\hat{y}_{ij} - \hat{y}(X, Y)|$
 - Introduced linear algorithm: 8-point

- **2D-to-3D**
 - Reprojection error: $E(Y, X) = \sum_{i} |\hat{y}_{ij} - \hat{y}(X, Y)|$
 - Introduced linear algorithm: DLT PnP

- **3D-to-3D**
 - Reprojection error: $E(Y, X) = \sum_{i} |\hat{y}_{ij} - \hat{y}(X, Y)|$
 - Introduced linear algorithm: Ankin's method
Recap: Eight-Point Algorithm for Essential Matrix Est.

- First proposed by Longuet and Higgins, 1981
- Algorithm:
 1. Rewrite epipolar constraints as a linear system of equations
 \[y_i^T x = a_i^T x = 0 \]
 \[A = (x_1, x_2, x_3) \]
 using Kronecker product \(a_i = y_i^T \otimes x_i \)
 and \(A = (a_1, a_2, a_3)^T \)
 2. Apply singular value decomposition (SVD) on \(A = U \Sigma V^T \)
 and unstack the 9th column of \(V \) into \(\hat{E} \).
 3. Project the approximate \(\hat{E} \) into the (normalized) essential space:
 Determine the SVD of \(\hat{E} = U \text{diag}(c_1, c_2, c_3) V^T \) with \(U, V \in \text{SO}(3) \)
 and replace the singular values \(c_1, c_2, c_3 \) with \(1, 1, 0 \) to find
 \[E = U \text{diag}(1, 1, 0) V^T \]

Recap: Eight-Point Algorithm cont.

- Normalized essential matrix: \(||E|| = ||\hat{E}|| = 1 \)
- Linear algorithms exist that require only 6 points for general motion
- Non-linear 5-point algorithm with up to 10 (possibly complex) solutions
- Points need to be in „general position“: certain degenerate configurations exist (e.g., all points on a plane)
- No translation, ideally: \(||\hat{E}|| = 0 \Rightarrow ||E|| = 0 \)
- But: for small translations, signal-to-noise ratio of image parallax may be problematic: „spurious“ pose estimate

Recap: Triangulation

- Goal: Reconstruct 3D point \(\tilde{x} = (x, y, z, w)^T \in \mathbb{P}^3 \) from 2D image observations \(\{y_1, \ldots, y_3\} \) for known camera poses \(\{T_1, \ldots, T_3\} \)
- Linear solution: Find 3D point such that reprojections equal its projections
 \[R_i = \pi(T_i \tilde{x}) = \sum_{j=1}^{n} x_j \pi(T_j x_i) \]
 - Each image provides one constraint \(y_i^T \pi(T_i \tilde{x}) = 0 \)
 - Leads to system of linear equations \(A \tilde{x} = 0 \), two approaches:
 - Set \(w = 1 \) and solve nonhomogeneous system
 - Find nullspace of \(A \) using SVD (this is what we did in CV I)
- Non-linear solution: Minimize least squares reprojection error (more accurate)
 \[\min_{\tilde{x}} \sum \left| y_i - R_i(T_i \tilde{x}) \right|^2 \]

Normalized Eight-Point Algorithm

- Hartley, In Defense of the Eight-Point Algorithm, PAMI 1997
 - Conditioning of \(A \) can be improved by shifting and rescaling image coordinates
 - Normalize coordinates to zero mean and unit variance
 - Very important for estimating the fundamental matrix due to pixel coordinates

Relative Scale Recovery

- Problem: Each subsequent frame-pair gives another solution for the reconstruction scale
- Solution: Triangulate overlapping points \(Y_{i-2}, Y_{i-1}, Y_i \) for current and last frame pair
 \[X_i = X_{i-2} X_{i-1} \]
 - Rescale translation of current relative pose estimate to match the reconstruction scale with the distance ratio between corresponding point pairs
 \[r_{ij} = \frac{|X_i - X_{i-2}|}{|X_i - X_{i-1}|} \]
 - Use mean or robust median over available pair ratios
Algorithm: 2D-to-2D Visual Odometry

Input: image sequence I_{st}
Output: aggregated camera poses T_{st}

Algorithm:
1. Extract and match keypoints between I_s and I_t
2. Compute relative pose T_{st}^{-1} from Essential matrix between I_s and I_t
3. Compute relative scale and rescale translation of T_{st}^{-1} accordingly
4. Aggregate camera pose by $T_k = T_{k-1}T_{st}^{-1}$

Topics of This Lecture

- **Point-based Visual Odometry**
 - Recap: 2D-to-2D Motion Estimation
 - 2D-to-3D Motion Estimation
 - 3D-to-3D Motion Estimation
 - Further Considerations

- **Direct Methods**
 - Direct image alignment
 - Pose parametrization
 - Lie group $se(3)$ and the exponential map
 - Residual linearization
 - Optimization considerations

2D-to-3D Motion Estimation

- Given a local set of 3D points $X = \{x_1, \ldots, x_N\}$ and corresponding image observations $Y = \{y_1, \ldots, y_N\}$, determine camera pose T, within the local map.
- Minimize least squares geometric reprojection error $E(T) = \sum_{i=1}^{N} ||y_i - \pi(T,x_i)||^2$
- **Perspective-n-Points (PnP) problem**, many approaches exist, e.g.,
 - Direct linear transform (DLT)
 - EPnP [Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 2009]

- **Goal:** determine projection matrix $P = (R|t) \in \mathbb{R}^{3 \times 4}$
- Each 2D-to-3D point correspondence $3D$: $x_i = (x_i, y_i, z_i)^T \in \mathbb{R}^3$
 $2D$: $y_i = (y_{i1}, y_{i2}, 1)^T \in \mathbb{R}^3$ gives two constraints
 $\begin{bmatrix} 0 & -w_i x_i & -w_i y_i & 0 \\ w_i x_i & 0 & -w_i z_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P^1 \\ P^2 \\ P^3 \end{bmatrix} = 0$
 through $y_i \times (P^k_n) = 0$
- Form linear system of equation $A p = 0$ with $p = \begin{bmatrix} P_1^1 \\ P_2^1 \\ P_3^1 \end{bmatrix} \in \mathbb{R}^3$
- Solve for p, determine unit singular vector of A corresponding to its smallest eigenvalue.

Direct Linear Transform for PnP

- **Goal:** determine projection matrix $P = (R|t) \in \mathbb{R}^{3 \times 4}$
- Each 2D-to-3D point correspondence $3D$: $x_i = (x_i, y_i, z_i)^T \in \mathbb{R}^3$
 $2D$: $y_i = (y_{i1}, y_{i2}, 1)^T \in \mathbb{R}^3$ gives two constraints
 $\begin{bmatrix} 0 & -w_i x_i & -w_i y_i & 0 \\ w_i x_i & 0 & -w_i z_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P^1 \\ P^2 \\ P^3 \end{bmatrix} = 0$
 through $y_i \times (P^k_n) = 0$
- Form linear system of equation $A p = 0$ with $p = \begin{bmatrix} P_1^1 \\ P_2^1 \\ P_3^1 \end{bmatrix} \in \mathbb{R}^3$
- Solve for p, determine unit singular vector of A corresponding to its smallest eigenvalue.
3D-to-3D Motion Estimation

• Given 3D point coordinates of corresponding points in two camera frames
 \[X_i = \{ x_{i,1}, \ldots, x_{i,3} \} \]
 \[X'_i = \{ x'_{i,1}, \ldots, x'_{i,3} \} \]
 determine relative camera pose \[T_{i+1}^{-1} \]

• Idea: determine rigid transformation that aligns the 3D points

• Geometric least squares error: \[E (T_{i+1}^{-1}) = \sum_{i=1}^{N} \| X_{i,3} - T_{i+1}^{-1} x_{i,3} \|^2 \]

• Closed-form solutions available, e.g., [Arun et al., 1987]

3D Rigid-Body Motion from 3D-to-3D Matches

• [Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987]
 • Corresponding 3D points, \(N \geq 3 \)
 \[X_i = \{ x_{i,1}, \ldots, x_{i,3} \} \]
 \[X'_i = \{ x'_{i,1}, \ldots, x'_{i,3} \} \]

• Determine means of 3D point sets
 \[\mu_i = \frac{1}{N} \sum_{i=1}^{N} x_{i,j} \]
 \[\mu'_i = \frac{1}{N} \sum_{i=1}^{N} x'_{i,j} \]

• Determine rotation from
 \[A = \sum_{i=1}^{N} (x_{i,1} - \mu_{i,1}) (x_{i,1} - \mu'_{i,1})^\top \]
 \[A = USV^\top \]
 \[R_{i+1} = VU^\top \]

• Determine translation as \(t_{i+1} = \mu_i - R_{i+1} \mu'_{i+1} \)

Algorithm: 3D-to-3D Stereo Visual Odometry

Input: stereo image sequence \(I_{crf}, I'_{crf} \)
Output: aggregated camera poses \(T_{crf} \)

Algorithm:
For each current stereo image \(I'_i, I_{i-1} \):
1. Extract and match keypoints between \(I'_i \) and \(I_{i-1} \)
2. Triangulate 3D points \(X'_i \) between \(I'_i \) and \(I_{i-1} \)
3. Compute camera pose \(T^{-1}_{i} \) from 3D-to-3D point matches \(X'_i \) to \(X_{i-1} \)
4. Aggregate camera poses by \(T_i = T_{i-1} T^{-1}_{i} \)

Further Considerations

• How to detect keypoints?
• How to match keypoints?
• How to cope with outliers among keypoint matches?
• How to cope with noisy observations?
• When to create new 3D keypoints? Which keypoints to use?
• 2D-to-2D, 2D-to-3D or 3D-to-3D?
• Optimize over more than two frames?

Recap: Keypoint Detectors

• Corners
 – Image locations with locally prominent intensity variation
 – Intersections of edges
• Blobs
 – Image regions that stick out from their surrounding in intensity/texture
 – Circular high-contrast regions
• Examples: Harris, FAST
• Scale-selection: Harris-Laplace

• Harris Corners
 – Image source: Svetlana Lazebnik

• Sten (SIFT) Blobs
 – Image source: Svetlana Lazebnik
Recap: Keypoint Detectors

• Desirable properties of keypoint detectors for VO:
 - High repeatability,
 - Localization accuracy,
 - Robustness,
 - Invariance,
 - Computational efficiency

Recap: Keypoint Detectors

• Corners vs. blobs for visual odometry:
 - Typically corners provide higher spatial localization accuracy, but are less well localized in scale
 - Corners are typically detected in less distinctive local image regions
 - Highly run-time efficient corner detectors exist (e.g., FAST)

Recap: Keypoint Matching

• Several data association principles:
 - Matching by reprojection error / distance to epipolar line
 • Assumes an initial guess for camera motion
 • (e.g., Kalman filter prediction, IMU, or wheel odometry)
 - Detect-then-track (e.g., KLT-tracker):
 • Correspondence search by local image alignment
 • Assumes incremental small (but unknown) motion between images
 - Matching by descriptor:
 • Scale-viewpoint-invariant local descriptors allow for wider image baselines
 • Robustness through RANSAC for motion estimation

Recap: Local Feature Descriptors

• Extract signatures that describe local image regions:
 - Histograms over image gradients (SIFT)
 - Histograms over Haar-wavelet responses (SURF)
 - Binary patterns (BRIEF, BRISK, FREAK, etc.)
 - Learning-based descriptors (e.g., Calonder et al., ECCV 2008)
 - Rotation-invariance: Align with dominant orientation
 - Scale-invariance: Adapt local region extent to keypoint scale

Recap: RANSAC

• Model fitting in presence of noise and outliers

• Example: fitting a line through 2D points
Recap: RANSAC

• Least-squares solution, assuming constant noise for all points

Recap: RANSAC

• We only need 2 points to fit a line. Let's try 2 random points

Recap: RANSAC

• Let's try 2 other random points

Recap: RANSAC

• Let's try yet another 2 random points

Recap: RANSAC

• Let's use the inliers of the best trial to perform least squares fitting

Recap: RANSAC

• RANdom SAmple Consensus algorithm formalizes this idea

Algorithm:
- Input: data \(\mathcal{D} \), required data points for fitting, success probability \(p \), outlier ratio \(\rho \)
- Output: inlier set
 1. Compute required number of iterations
 2. For \(\mathcal{L} \) iterations do:
 1. Randomly select a subset of \(\mathcal{D} \) data points
 2. Fit model on the subset
 3. Count inliers and keep model/subset with largest number of inliers
 3. Refit model using found inlier set

Slide credit: Jörg Stückler
Recap: RANSAC

- Required number of iterations
 \[N \text{ for } p = 0.99 \]

<table>
<thead>
<tr>
<th>Line</th>
<th>Required #points</th>
<th>Outlier ratio (\epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>70%</td>
</tr>
</tbody>
</table>

- Plane
 \[N \text{ for } p = 0.99 \]

<table>
<thead>
<tr>
<th>Essential matrix</th>
<th>Required #points</th>
<th>Outlier ratio (\epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(8)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>(26)</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>70%</td>
</tr>
</tbody>
</table>

Probabilistic Modelling

- Model image point observation likelihood
 \[p(y_i | x_i, \xi) \]
 - E.g., Gaussian:
 \[p(y_i | x_i, \xi) \sim N(y; \pi(\xi(x_i)), \Sigma_y) \]

- Optimize maximum a-posteriori likelihood of estimates
 \[p(x_i, \xi | Y) \propto p(Y | x_i, \xi) p(x_i | \xi) = p(x_i | \xi) \prod_{i} p(y_i | x_i, \xi) \]

- Neg. log-likelihood:
 \[L(X, \xi, Y) = - \log(p(x_i | \xi)) \sum_{i} \log(p(y_i | x_i, \xi)) \]

- Gaussian prior and observation likelihood:
 \[L(X, \xi, Y) = \text{const.} + \sum_{i} \left[(x_i - \mu_x) \Sigma_x^{-1} (x_i - \mu_x) + (y_i - \pi(\xi(x_i))) \Sigma_y^{-1} (y_i - \pi(\xi(x_i))) \right] \]

Drift in Motion Estimates

- Estimation errors accumulate: Drift
- Noisy observations in 2D image point location
- Motion estimation and triangulation accuracy depend on ratio of baseline to depth
- 3D-vs. 2D: Low 3D triangulation accuracy for small baseline
- 2D-to-2D: 2x triangulation, typically less accurate than 2D-to-3D

Keyframes

- Popular approach to reduce drift: Keyframes
- Carefully select reference images for motion estimation / triangulation
- Incrementally estimate motion towards keyframe
- If baseline sufficient (and/or image overlap small), create next keyframe [and triangulate 3D positions of keypoints]

Motion Estimation for Input Type

<table>
<thead>
<tr>
<th>Correspondences</th>
<th>Monocular</th>
<th>Stereo</th>
<th>RGB-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-to-2D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2D-to-3D</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3D-to-3D</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Local Optimization Windows

- Can we do better than optimization over two images?

- Optimize motion / reconstruction on a local current window of images
 \[E(N_{1:k}, \xi_{1:k}) = \sum_{k} \sum_{i} |y_{i,j} - \pi(\xi_{i,j})|_2^2 \]
 - Local bundle adjustment
 - Local motion-only bundle adjustment
 (3D keypoint positions held fixed)
 - Initialize with algebraic approaches
Summary

- Visual odometry estimates relative camera motion from image sequences

- Indirect point-based methods
 - Minimize geometric reprojection error
 - 2D-to-2D, 2D-to-3D, 3D-to-3D motion estimation
 - RANSAC for robust keypoint matching
 - Keyframes can reduce drift
 - Local optimization window can further increase accuracy

- Next: direct methods

Topics of This Lecture

- Point-based Visual Odometry
 - Recap: 2D-to-2D Motion Estimation
 - 2D-to-3D Motion Estimation
 - 3D-to-3D Motion Estimation
 - Further Considerations

- Direct Methods
 - Direct image alignment
 - Pose parametrization
 - Lie group se(3) and the exponential map
 - Residual linearization
 - Optimization considerations

Direct Visual Odometry Pipeline

- Avoid manually designed keypoint detection and matching
- Instead: direct image alignment
- Warping requires depth
 - RGB-D
 - Fixed-baseline stereo
 - Temporal stereo, tracking and (local) mapping

Direct Visual Odometry Example (RGB-D)

Robust Odometry Estimation for RGB-D Cameras

Christian Kiel, Jürgen Sturm, Daniel Cremers

Direct Image Alignment Principle

- If we know pixel depth, we can „simulate“ an image from a different view point
- Ideally, the warped image is the same as the image taken from that pose:

 \[I_1(y) = I_2(\pi(\mathbf{T}(\xi)z, y)) \]
• RGB-D cameras measure depth, we only need to estimate camera motion!
• In addition to the photometric error
\[I_1(y) = I_2(\pi(T(\xi)Z(y)y)) \]
we can measure geometric error directly
\[|T(\xi)|Z(y)y| = Z_2(\pi(T(\xi)Z(y)y)) \]

Optimization Approach

• Optimize negative log-likelihood
 – Product of exponentials becomes a summation over quadratic terms
 – Normalizers are independent of the pose
\[E(\xi) = \sum_{y \in \Omega} \frac{r(y, \xi)^2}{\sigma^2} \]
 stacked residuals: \[r(\xi) = r(\xi)^{\top} W r(\xi) \]
\[r(y, \xi) = I_1(y) - I_2(\pi(T(\xi)Z(y)y)) \]

• Non-linear least squares problem can be efficiently optimized using standard second-order tools (Gauss-Newton, Levenberg-Marquardt)

Gauss-Newton for Non-Linear Least Squares

• Gauss-Newton method, iterate:
 – Linearize residuals:
\[\frac{r(\xi)}{\sigma} = \frac{1}{2} r(\xi)^{\top} W r(\xi) \]
\[\nabla_r(\xi) = J^\top W r(\xi) \]
\[\nabla^2_r(\xi) = J^\top W J \]
 – Find minimum of linearized system, linearize and set \[\nabla^2 r(\xi) = 0 \]:
\[\nabla^2 r(\xi) = \nabla^2_r(\xi) = \nabla^2_r(\xi) = \xi - H^\top W J \]

Pose Parametrization for Optimization

• Requirements on pose parametrization
 – No singularities
 – Minimal to avoid constraints
• Various pose parametrizations available
 – Direct matrix representation \(\Rightarrow \) not minimal
 – Quaternion / translation \(\Rightarrow \) not minimal
 – Euler angles / translation \(\Rightarrow \) singularities
 – Twist coordinates of elements in Lie Algebra se(3) of SE(3)
 (axis-angle / translation)
Topics of This Lecture

- Point-based Visual Odometry
 - Recap: 2D-to-2D Motion Estimation
 - 2D-to-3D Motion Estimation
 - 3D-to-3D Motion Estimation
 - Further Considerations
- Direct Methods
 - Direct image alignment
 - Pose parametrization
 - Lie group se(3) and the exponential map
 - Residual linearization
 - Optimization considerations

Representing Motion using Lie Algebra se(3)

- $\xi := \begin{pmatrix} \dot{\omega} \\ v \end{pmatrix} \in \mathbb{R}^d$
- $\omega \in \mathbb{R}^3$
- $v \in \mathbb{R}^3$
- $\xi := \begin{pmatrix} \dot{\omega} \\ 0 \end{pmatrix} \in \mathbb{R}^{d+1}$

- $SE(3)$ is a smooth manifold, i.e. a Lie group
- Its Lie algebra $se(3)$ provides an elegant way to parametrize poses for optimization
- Its elements $\xi \in se(3)$ form the tangent space of $SE(3)$ at identity
- The $se(3)$ elements can be interpreted as rotational and translational velocities (twists)

Insights into se(3)

- Let's look at rotations first and assume time-continuous motion
 - We know that $R(t)R'(t) = I$
 - Taking the derivative for time yields $R(t)R'(t) = -R(t)R'(t)$
 - This means there exists a skew-symmetric matrix $\Omega(t) = -\dot{R}(t)$
 - Assume constant $\Omega(t)$ and solve linear ordinary differential equation (ODE): $R(t) = \exp(\Omega(t))$
 - Further assuming $R(0) = I$, we obtain
 - Matrix exponential has a closed-form solution; $\Omega(t)$ corresponds to minimal axis-angle representation

Further Insights into se(3)

- For continuous rigid-body motion we can write $T(t) = (T(t)T^{-1}(t))T(0) = \xi(t) T(t)$
 - Interpretation: tangent vector along curve of $T(t)$
 - Again, for constant $\xi(t)$ this linear ODE has a unique solution: $T(t) = \exp(\xi(t))$
 - For initial condition $T(0) = I$, we have $T(t) = \exp(\xi(t))$
 - To reduce clutter in notation, we will absorb t into ξ and $\dot{\xi}$

Exponential Map of SE(3)

- The exponential map finds the transformation matrix for a twist:
 - $\exp(\xi) = \begin{pmatrix} \exp(\omega)A & \omega \times \text{A} \\ 0 & 1 \end{pmatrix}$
 - $\exp(\xi) = I + \frac{1}{2} \sin |\xi| |R - R^T|$
 - $A = I + \frac{1}{2} \cos |\xi| - \frac{1}{2} |\xi| - \sin |\xi| \omega \times R$

Logarithm Map of SE(3)

- The logarithm maps twists to transformation matrices:
 - $\log(T) = \begin{pmatrix} \log(R) & -A^{-1} \omega \\ 0 & 0 \end{pmatrix}$
 - $\log(R) = \frac{|\omega|}{2 \sin |\omega|} (R - R^T)$
 - $|\omega| = \cos^{-1}(\frac{\text{tr}(R) - 1}{2})$
Some Notation for Twist Coordinates

- Let’s define the following notation:
 - Inversion of hat operator:
 \[\hat{O}(T) = \log(T) = (\omega_1 \omega_2 \omega_3 \mathbf{v})^T \]
 - Conversion:
 \[\xi(T) = (\log(T))^T T(\xi) = \exp(\tilde{\xi}) \]
 - Pose inversion:
 \[\xi^{-1} = \log(T(\xi)^{-1}) = -\xi \]
 - Pose concatenation:
 \[\xi \otimes \xi_2 = (\log(T(\xi_2)) T(\xi_1)))^T \]
 - Pose difference:
 \[\xi_1 \otimes \xi_2 = (\log(T(\xi_2)^{-1} T(\xi_1)))^T \]

Optimization with Twist Coordinates

- Twists provide a minimal local representation without singularities
- Since \(\text{SE}(3) \) is a smooth manifold, we can decompose transformations in each optimization step into the transformation itself and an infinitesimal increment:
 \[T(\xi) = T(\xi) \exp(\delta\xi) = T(\xi + \delta\xi) \]
- Example: Gradient descent on the auxiliary variable:
 \[\delta\xi^* = -\gamma \nabla_{\xi} E(\xi, \delta\xi) \]
 \[T(\xi_{i+1}) = T(\xi_i) \exp(\delta\xi^*) \]

Properties of Residual Linearization

- Linearizing residuals yields:
 \[\nabla E(\xi, y) = -\nabla_y f_2(\omega(y, \xi)) \nabla_c \omega(y, \xi) \]
 with \(\omega(y, \xi) := \pi(T(\xi) Z(y, y)) \)
 - Linearization is only valid for motions that change the projection in a small image neighborhood that is captured by the local gradient

Topics of This Lecture

- Point-based Visual Odometry
 - Recap: 2D-to-2D Motion Estimation
 - 2D-to-3D Motion Estimation
 - 3D-to-3D Motion Estimation
 - Further Considerations
- Direct Methods
 - Direct image alignment
 - Pose parametrization
 - Lie group se(3) and the exponential map
 - Residual linearization
 - Optimization considerations

Coarse-To-Fine Optimization

- Gaussian noise assumption on photometric residuals oversimplifies
- Outliers (occlusions, motion, etc.):
 Residuals are distributed with more mass on the larger values

Residual Distributions

- Normal distribution
- Laplace distribution
- Student-t distribution
Can we change the residual distribution in least squares optimization?
- For specific types of distributions: yes!
- Iteratively reweighted least squares: Reweight residuals in each iteration

\[E(\xi) = \sum_{y \in \mathcal{Y}} w(\gamma(y, \xi)) \frac{|r(y, \xi)|^2}{\sigma^2} \]

Laplace distribution:
- \[w(\gamma(y, \xi)) = |r(y, \xi)|^{-1} \]

Huber Loss
- Huber-loss "switches" between Gaussian (locally at mean) and Laplace distribution

\[\|r\|_\delta = \begin{cases} \frac{1}{2} \|r\|^2_2 & \text{if } \|r\|_2 \leq \delta \\ \delta (\|r\|_1 - \frac{1}{2}\delta) & \text{otherwise} \end{cases} \]

References and Further Reading
- MASKS and MVG textbooks