Recap: Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)
 - Randomly chosen = Monte Carlo (MC)
 - As the number of samples become very large – the characterization becomes an equivalent representation of the true pdf.

Recap: Sequential Importance Sampling

\[
\text{function } \{x_i^t, w_i^t\}_{i=1}^N = \text{SIS } \{x_{i-1}, w_{i-1}\}_{i=1}^N, y_t
\]

\[
\eta = 0 \quad \text{Initialize}
\]

for \(i = 1 : N\)

\[
x_i^t \sim q(x_i | x_{i-1}, y_t)
\]

Sample from proposal pdf

\[
w_i^t = w_{i-1}^t \frac{p(y_t | x_t) p(x_t | x_{i-1})}{q(x_i | x_{i-1}, y_t)}
\]

Update weights

\[
\eta = \eta + w_i^t
\]

Update norm. factor

end

for \(i = 1 : N\)

\[
w_i^t = w_i^t/\eta
\]

Normalize weights

Recap: SIS Algorithm with Transitional Prior

\[
\text{function } \{x_i^t, w_i^t\}_{i=1}^N = \text{SIS } \{x_{i-1}, w_{i-1}\}_{i=1}^N, y_t
\]

\[
\eta = 0 \quad \text{Initialize}
\]

for \(i = 1 : N\)

\[
x_i^t \sim p(x_t | x_{i-1})
\]

Sample from proposal pdf

\[
w_i^t = w_{i-1}^t \frac{p(y_t | x_t) p(x_t | x_{i-1})}{q(x_i | x_{i-1}, y_t)}
\]

Update weights

\[
\eta = \eta + w_i^t
\]

Update norm. factor

end

for \(i = 1 : N\)

\[
w_i^t = w_i^t/\eta
\]

Normalize weights

For a concrete algorithm, we need to define the importance density \(q(. | .)\).
Recap: Resampling

- Degeneracy problem with SIS
 - After a few iterations, most particles have negligible weights.
 - Large computational effort for updating particles with very small contribution to \(p(x_t | y_1:t) \).

- Idea: Resampling
 - Eliminate particles with low importance weights and increase the number of particles with high importance weight.
 - \(\{ x_i^t, w_i^t \}_{i=1}^N \rightarrow \{ x_i^t, \frac{1}{N} \}_{i=1}^N \) – The new set is generated by sampling with replacement from the discrete representation of \(p(x_t | y_1:t) \) such that \(\sum x_i^t = x_i^t \) and \(\sum w_i^t = w_i^t \).

Recap: Efficient Resampling Approach

- From Arulampalam paper:
 - Basic idea: choose one initial small random number; deterministically sample the rest by “crawling” up the cdf.
 - This is \(O(N) \)!

Recap: Sampling-Importance-Resampling (SIR)

\[
\text{function}\ [X_i] = \text{SIR} \left[X_{i-1}, y_1 \right] \\
\hat{X}_i - X_i = 0 \\
\text{for } i = 1:N \\
\text{Sample } x_i^t \sim p(x_i | x_{i-1}^t) \\
w_i^t = p(y_i | x_i^t) \\
\text{end} \\
\text{for } i = 1:N \\
\text{Draw } i \text{ with probability } \propto w_i^t \\
\text{Add } x_i^t \text{ to } X_i \\
\text{end}
\]

Important property:
- Particles are distributed according to pdf from previous time step.
- Particles are distributed according to posterior from this time step.

Today: Multi-Object Tracking

[Ess, Leibe, Schindler, Van Gool, CVPR’08; ICRA’09; PAMI’09]
Topics of This Lecture

- Multi-Object Tracking
 - Motivation
 - Ambiguities
- Simple Approaches
 - Gating
 - Mahalanobis distance
 - Nearest-Neighbor Filter
- Track-Splitting Filter
 - Derivation
 - Properties
- Outlook

Elements of Tracking

- Detection
 - Where are candidate objects?
 - Lectures 2-6
- Data association
 - Which detection corresponds to which object?
 - Today’s topic
- Prediction
 - Where will the tracked object be in the next time step?
 - Lectures 7-9

Motion Correspondence

- Motion correspondence problem
 - Do two measurements at different times originate from the same object?
- Why is it hard?
 - First make predictions for the expected locations of the current set of objects
 - Match predictions to actual measurements
 - This is where ambiguities may arise...

Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
 - Have the objects ceased to exist, or are they simply occluded?
2. There may be unexpected measurements
 - Newly visible objects, or just noise?
3. More than one measurement may match a prediction
 - Which measurement is the correct one (what about the others)?
4. A measurement may match to multiple predictions
 - Which object shall the measurement be assigned to?

Let’s Formalize This

- Multi-Object Tracking problem
 - We represent a track by a state vector x, e.g.,

 $x = [x_1, y_1, v_x, v_y]^T$
 - As the track evolves, we denote its state by the time index k:

 $x^{(k)} = \begin{bmatrix} x_1^{(k)} & y_1^{(k)} & v_x^{(k)} & v_y^{(k)} \end{bmatrix}^T$
 - At each time step, we get a set of observations (measurements)

 $y^{(k)} = \begin{bmatrix} y_1^{(k)} & \ldots & y_N^{(k)} \end{bmatrix}$
 - We now need to make the data association between tracks

 $\{x_1^{(k)}, \ldots, x_N^{(k)}\}$ and observations $\{y_1^{(k)}, \ldots, y_N^{(k)}\}$:

 $i_j = j$ if $y_j^{(k)}$ is associated with $x_i^{(k)}$
Reducing Ambiguities: Simple Approaches

• Gating
 – Only consider measurements within a certain area around the predicted location.
 ⇒ Large gain in efficiency, since only a small region needs to be searched

• Nearest-Neighbor Filter
 – Among the candidates in the gating region, only take the one closest to the prediction \(x_o \).
 \[z_j^{(k)} = \underset{z_j}{\text{arg min}} |x_j^{(k)} - y_j^{(k)}| \]
 – Better: the one most likely under a Gaussian prediction model
 \[z_j^{(k)} = \underset{z_j}{\text{arg max}} \mathcal{N}(y_j^{(k)}, x_j, \Sigma_p) \]
 which is equivalent to taking the Mahalanobis distance

Gating with Mahalanobis Distance

• Recall: Kalman filter
 – Provides exactly the quantities necessary to perform this
 – Predicted mean location \(x_p \)
 – Prediction covariance \(\Sigma_p \)
 – The Kalman filter prediction covariance also defines a useful gating area.
 ⇒ E.g., choose the gating area such that 95% of the probability mass is covered.

• Side note
 – The Mahalanobis distance is \(\chi^2 \) distributed with the number of degrees of freedom \(n_z \) equal to the dimension of \(x \).
 – For a given probability bound, the corresponding threshold on the Mahalanobis distance can be obtained from \(\chi^2 \) distribution tables.

Mahalanobis Distance

• Additional notation
 – Our KF state of track \(x_l \) is given by the prediction \(x_l^{(k)} \) and covariance \(\Sigma_l^{(k)} \).
 – We define the innovation that measurement \(y_j \) brings to track \(x_l \) at time \(k \) as
 \[v_j^{(k)} = (y_j^{(k)} - x_l^{(k)}) \]
 – With this, we can write the observation likelihood shortly as
 \[p(y_j^{(k)} | x_l^{(k)}) = \exp \left\{ \frac{1}{2} \sum_{i,j} v_j^{(k)} \Sigma_{ji}^{-1} v_j^{(k)} \right\} \]
 – We define the ellipsoidal gating or validation volume as
 \[v^{(k)}(\gamma) = \left\{ y | (y - x_l^{(k)})^T \Sigma_l^{(k)-1} (y - x_l^{(k)}) \leq \gamma \right\} \]

Problems with NN Assignment

• Limitations
 – For NN assignments, there is always a finite chance that the association is incorrect, which can lead to serious effects.
 ⇒ If a Kalman filter is used, a misassigned measurement may lead the filter to lose track of its target.
 – The NN filter makes assignment decisions only based on the current frame.
 ▪ More information is available by examining subsequent images.
 ⇒ Let’s make use of this information by postponing the decision process until a future frame will resolve the ambiguity...

Topics of This Lecture

• Multi-Object Tracking
 – Motivation
 – Ambiguities

• Simple Approaches
 – Gating
 – Mahalanobis distance
 – Nearest-Neighbor Filter

• Track-Splitting Filter
 – Derivation
 – Properties

• Outlook

Track-Splitting Filter

• Idea
 – Problem with NN filter was hard assignment.
 – Rather than arbitrarily assigning the closest measurement, form a tree.
 – Branches denote alternate assignments.
 – No assignment decision is made at this stage!
 ⇒ Decisions are postponed until additional measurements have been gathered...

• Potential problems?
 – Track trees can quickly become very large due to combinatorial explosion.
 ⇒ We need some measure of the likelihood of a track, so that we can prune the tree!
Track Likelihoods

• Expressing track likelihoods
 – Given a track l, denote by θ_l the event that the sequence of assignments
 \[Z_{k,t} = \{ z_{1,t}, \ldots, z_{N_{k},t} \} \]
 from time 1 to k originate from the same object.
 – The likelihood of θ_l is the joint probability over all observations in the track
 \[L(\theta_{l,t}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{N_j}{2}}} \exp\left(-\frac{1}{2} \sum_{j=1}^{k} v_{j,t}^T \Sigma_{j,t}^{-1} v_{j,t} \right) \]
 \[\mathcal{N}(0, \Sigma) \]
 – If we assume Gaussian observation likelihoods, this becomes
 \[L(\theta_{l,t}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{N_j}{2}}} \exp\left(-\frac{1}{2} \sum_{j=1}^{k} v_{j,t}^T \Sigma_{j,t}^{-1} v_{j,t} \right) \]

Track Likelihoods (2)

• Starting from the likelihood
 \[L(\theta_{l,t}) = \prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{N_j}{2}}} \exp\left(-\frac{1}{2} \sum_{j=1}^{k} v_{j,t}^T \Sigma_{j,t}^{-1} v_{j,t} \right) \]
 – Define the modified log-likelihood λ_l for track l as
 \[\lambda_l(k) = -2 \log \left(\prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{N_j}{2}}} \exp\left(-\frac{1}{2} \sum_{j=1}^{k} v_{j,t}^T \Sigma_{j,t}^{-1} v_{j,t} \right) \right) \]
 \[= \lambda_l(k) = -2 \log \left(\prod_{j=1}^{k} \frac{1}{(2\pi)^{\frac{N_j}{2}}} \exp\left(-\frac{1}{2} \sum_{j=1}^{k} v_{j,t}^T \Sigma_{j,t}^{-1} v_{j,t} \right) \right) \]
 \[\Rightarrow \text{Recursive calculation, sum of Mahalanobis distances of all the measurements assigned to track } l. \]

Track-Splitting Filter

• Effect
 – Instead of assigning the measurement that is currently closest, as in the NN algorithm, we can select the sequence of measurements that minimizes the total Mahalanobis distance over some interval!
 – Modified log-likelihood provides the merit of a particular node in the track tree.
 – Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.
• Problem
 – The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.

Pruning Strategies

• In order to keep this feasible, need to apply pruning
 – Deleting unlikely tracks
 • May be accomplished by comparing the modified log likelihood $\lambda_l(k)$, which has a chi-square distribution with kN degrees of freedom, with a threshold α (set according to chi-square distribution tables).
 • Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
 \[\Rightarrow \text{Use sliding window or exponential decay term.} \]
 – Merging track nodes
 • If the state estimates of two track nodes are similar, merge them.
 • E.g., if both tracks validate identical subsequent measurements.
 – Only keeping the most likely N tracks
 • Rank tracks based on their modified log-likelihood.

Summary: Track-Splitting Filter

• Properties
 – Very old algorithm
 • Improvement over NN assignment.
 • Assignment decisions are delayed until more information is available.
• Many problems remain
 – Exponential complexity, heuristic pruning needed.
 – Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
 \[\Rightarrow \text{Would need to add exclusion constraints such that each measurement may only belong to a single track.} \]
 \[\Rightarrow \text{Impossible in this framework...} \]

Topics of This Lecture

• Multi-Object Tracking
 – Motivation
 – Ambiguities
• Simple Approaches
 – Gating
 – Mahalanobis distance
 – Nearest Neighbor Filter
• Track-Splitting Filter
 – Derivation
 – Properties
• Outlook
Outlook for the Next Lectures

• More powerful approaches
 – Multi-Hypothesis Tracking (MHT)
 • Well-suited for KF, EKF approaches [Reid, 1979]
 – Joint Probabilistic Data Association Filters (JPDAF)
 • Well-suited for Particle Filter based approaches [Fortmann, 1983]

• Data association as convex optimization problem
 – Bipartite Graph Matching (Hungarian algorithm)
 – Network Flow Optimization
 ⇒ Efficient, globally optimal solutions for subclass of problems.

References and Further Reading

• A good tutorial on Data Association