Topics of This Lecture

- **Recap: CNN Architectures**
- **Residual Networks**
 - Detailed analysis
 - ResNets as ensembles of shallow networks
- **Applications of CNNs**
 - Object detection
 - Semantic segmentation
 - Face identification

Recap: Convolutional Neural Networks

- **Neural network with specialized connectivity structure**
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Recap: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^5 images instead of 10^3)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

Recap: VGGNet (2014/15)

- **Main ideas**
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

- **Results**
 - Improved ILSVRC top-5 error rate to 6.7%.
Recap: GoogLeNet (2014)
- Ideas:
 - Learn features at multiple scales
 - Modular structure
 - Inception module + copies
 - Auxiliary classification outputs for training the lower layers (deprecated)

Recap: Visualizing CNNs
- Feature visualization of convolutional net trained on ImageNet from [Zeller & Fergus 2013]

Topics of This Lecture
- Recap: CNN Architectures
 - Residual Networks
 - Detailed analysis
 - ResNets as ensembles of shallow networks
 - Applications of CNNs
 - Object detection
 - Semantic segmentation
 - Face identification

Recap: Residual Networks
- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers

Spectrum of Depth
- 5 layers: easy
- >10 layers: initialization, Batch Normalization
- >30 layers: skip connections
- >100 layers: identity skip connections
- >1000 layers: deeper
Spectrum of Depth

- Deeper models are more powerful
 - But training them is harder.
 - Main problem: getting the gradients back to the early layers
 - The deeper the network, the more effort is required for this.

Initialization

- Importance of proper initialization (Recall Lecture 14)
 - Glorot initialization for tanh nonlinearities
 - He initialization for ReLU nonlinearities
 ⇒ For deep networks, this really makes a difference!

Batch Normalization

- Effect of batch normalization
 - Greatly improved speed of convergence

Going Deeper

- Checklist
 - Initialization ok
 - Batch normalization ok
 - Are we now set?
 - Is learning better networks now as simple as stacking more layers?

Simply Stacking Layers?

- Experiment going deeper
 - Plain nets: stacking 3-3 convolution layers
 ⇒ 56-layer net has higher training error than 20-layer net

- General observation
 - Overly deep networks have higher training error
 - A general phenomenon, observed in many training sets
Why Is That???

- A deeper model should not have higher training error!
 - Richer solution space should allow it to find better solutions
- Solution by construction
 - Copy the original layers from a learned shallower model
 - Set the extra layers as identity
 - Such a network should achieve at least the same low training error.
- Reason: Optimization difficulties
 - Solvers cannot find the solution when going deeper...

Deep Residual Learning

- **Plain net**
 - Plain net
 - $H(x)$ is any desired mapping
 - $H(x) = F(x)$

- **Residual net**
 - Residual net
 - $F(x)$ is a residual mapping w.r.t. identity
 - $F(x) = F(x) + x$
 - $H(x) = F(x) + x$

ImageNet Performance

- Network Design
 - Simple, VGG-style design
 - (Almost) all 3x3 convolutions
 - Spatial size /2 ⇒ #filters : 2
 - Same complexity per layer
 - Batch normalization
 - ⇒ Simple design, just deep.

- Deep Residual Learning
 - $F(x)$ is a residual mapping w.r.t. identity
 - $F(x) = F(x) + x$

- ImageNet Performance
 - ImageNet Classification top-5 error (%)
 - 152 layers
 - 22 layers
 - 19 layers
 - 11 layers
 - 8 layers
 - Shallow
What Is The Secret Behind ResNets?

• Empirically, they perform very well, but why is that?

• He’s original explanation [He, 2016]
 - ResNets allow gradients to pass through the skip connections in unchanged form.
 - This makes it possible to effectively train deeper networks.
 => Secret of success: depth is good

• More recent explanation [Veit, 2016]
 - ResNets actually do not use deep network paths.
 - Instead, they effectively implement an ensemble of shallow network paths.
 => Secret of success: ensembles are good

Effect of Deleting Layers at Test Time

• Experiments on ImageNet classification
 - When deleting a layer in VGG-Net, it breaks down completely.
 - In ResNets, deleting a single layer has almost no effect (except for the pooling layers)
 - Deleting an increasing number of layers increases the error smoothly
 => Paths in a ResNet do not strongly depend on each other.

Which Paths Are Important?

• How much does each of the paths contribute?
 - Distribution of path lengths follows a Binomial distribution
 - Sample individual paths and measure their gradient magnitude
 => Effectively, only shallow paths with 5-17 modules are used!
 => This corresponds to only 0.45% of the available paths here.
Summary

- The effective paths in ResNets are relatively shallow
 - Effectively only 5-17 active modules
- This explains the resilience to deletion
 - Deleting any single layer only affects a subset of paths (and the shorter ones less than the longer ones).
- New interpretation of ResNets
 - ResNets work by creating an ensemble of relatively shallow paths
 - Making ResNets deeper increases the size of this ensemble
 - Excluding longer paths from training does not negatively affect the results.

Topics of This Lecture

- Recap: CNN Architectures
- Residual Networks
 - Detailed analysis
 - ResNets as ensembles of shallow networks
- Applications of CNNs
 - Object detection
 - Semantic segmentation
 - Face identification

The Learned Features are Generic

- Experiment: feature transfer
 - Train AlexNet-like network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 - State of the art accuracy already with only 6 training images!

Transfer Learning with CNNs

1. Train on ImageNet
2. If small dataset: fix all weights (treat CNN as fixed feature extractor), retrain only the classifier
 - i.e., swap the Softmax layer at the end

Other Tasks: Detection

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

- Results on PASCAL VOC Detection benchmark
 - Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013]
 - 33.4% mAP DPM
 - 53.7% mAP

Slide credit: Andrej Karpathy
More Recent Version: Faster R-CNN

- One network, four losses
 - Remove dependence on external region proposal algorithm.
 - Instead, infer region proposals from same CNN.
 - Feature sharing
 - Joint training → Object detection in a single pass becomes possible.

Faster R-CNN (based on ResNets)

YOLO

Object Detection Performance

Semantic Image Segmentation

- Perform pixel-wise prediction task
 - Usually done using Fully Convolutional Networks (FCNs)
 - All operations formulated as convolutions
 - Advantage: can process arbitrarily sized images
CNNs vs. FCNs

- **CNN**
 - Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class.

- **FCN**
 - Encoder-Decoder Architecture
 - Problem: FCN output has low resolution
 - Solution: perform upsampling to get back to desired resolution
 - Use skip connections to preserve higher-resolution information

Semantic Image Segmentation

- **Intuition**
 - Use skip connections to preserve higher-resolution information

Semantic Segmentation

- **Current state-of-the-art**
 - Based on an extension of ResNets

Other Tasks: Face Identification

- **Learning Similarity Functions**
 - Siamese Network
 - Present the network with triplets of examples
 - Apply triplet loss to learn an embedding \(f(\cdot) \) that groups the positive example closer to the anchor than the negative one.
 - Used with great success in Google's FaceNet face identification.
References and Further Reading

- ResNets

References: Computer Vision Tasks

- Object Detection

- Semantic Segmentation