Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Recap: Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

- Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower/impossible after that.

Recap: Data Augmentation

- Effect
 - Much larger training set
 - Robustness against expected variations

- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation

- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests

- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks
Topics of This Lecture
• Recap: Tricks of the Trade
• Nonlinearities
• Initialization
• Advanced techniques
 • Batch Normalization
 • Dropout
• Convolutional Neural Networks
 • Neural Networks for Computer Vision
 • Convolutional Layers
 • Pooling Layers

Choosing the Right Sigmoid

• Normalization is also important for intermediate layers
 • Symmetric sigmoids, such as tanh, often converge faster than the standard logistic sigmoid.
 • Recommended sigmoid:
 \[f(x) = 1.7159 \tanh \left(\frac{x}{2} \right) \]
 ⇒ When used with normalized inputs, the variance of the outputs will be close to 1.

Effect of Sigmoid Nonlinearities
• Effects of sigmoid/tanh function
 • Linear behavior around 0
 • Saturation for large inputs
• If all parameters are too small
 • Variance of activations will drop in each layer
 • Sigmoids are approximately linear close to 0
 • Good for passing gradients through, but...
 • Gradual loss of the nonlinearity
 ⇒ No benefit of having multiple layers
• If activations become larger and larger
 • They will saturate and gradient will become zero

Another Note on Error Functions

• Squared error on sigmoid/tanh output function
 • Avoids penalizing "too correct" data points.
 • But: zero gradient for confidently incorrect classifications!
 ⇒ Do not use \(L_2 \) loss with sigmoid outputs (instead: cross-entropy)!

Usage
• Output nodes
 • Typically, a sigmoid or tanh function is used here.
 • Sigmoid for probabilistic classification (2-class case).
 • Softmax for multi-class classification
 • tanh for regression tasks
• Internal nodes
 • Historically, tanh was most often used.
 • tanh is better than sigmoid for internal nodes, since it is already centered.
 • Internally, tanh is often implemented as piecewise linear function.
 • More recently: ReLU often used for classification tasks.

Extension: ReLU
• An improvement for learning deep models
 • Use Rectified Linear Units (ReLU)
 \[g(a) = \max \{ 0, a \} \]
 • Effect: gradient is propagated with a constant factor
 \[\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases} \]
• Advantages
 • Much easier to propagate gradients through deep networks.
 • We do not need to store the ReLU output separately
 • Reduction of the required memory by half compared to tanh!
 ⇒ ReLU has become the de-facto standard for deep networks.
Extension: ReLU

- An improvement for learning deep models
 - Use Rectified Linear Units (ReLU)
 $$g(a) = \max \{0, a\}$$
 - Effect: gradient is propagated with a constant factor
 $$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}$$
- Disadvantages / Limitations
 - A certain fraction of units will remain “stuck at zero”.
 - If the initial weights are chosen such that the ReLU output is 0 for the entire training set, the unit will never pass through a gradient to change those weights.
 - ReLU has an offset bias, since its outputs will always be positive.

Further Extensions

- Rectified linear unit (ReLU)
 $$g(a) = \max \{0, a\}$$
- Leaky ReLU
 $$g(a) = \max \{\beta a, a\} \quad \beta \in [0.01, 0.3]$$
 - Avoids stuck-at-zero units
 - Weaker offset bias
- ELU
 $$g(a) = \begin{cases} a, & a \geq 0 \\ e^a - 1, & a < 0 \end{cases}$$
 - No offset bias anymore
 - BUT: need to store activations

Initializing the Weights

- Motivation
 - The starting values of the weights can have a significant effect on the training process.
 - Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.
- Guideline (from [LeCun et al., 1998] book chapter)
 - Assuming that
 - The training set has been normalized
 - The recommended sigmoid is used
 - The initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and variance
 $$\sigma^2 = \frac{1}{n_{\text{in}}}$$
 where $$n_{\text{in}}$$ is the fan-in (#connections into the node).

Glorot Initialization

- Breakthrough results
 - In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a more general method for automatic initialization.
 - This new initialization massively improved results and made direct learning of deep networks possible overnight.
- Let’s look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS 2010.
Analysis

- Variance of neuron activations
 - Suppose we have an input \(X \) with \(n \) components and a linear neuron with random weights \(W \) that splits out a number \(Y \):
 - What is the variance of \(Y \)?
 \[
 Y = W_1X_1 + W_2X_2 + \cdots + W_nX_n
 \]
 - If inputs and outputs have both mean 0, the variance is
 \[
 \text{Var}(W_iX_i) = E[(X_i)^2]\text{Var}(W_i) + E[W_i]^2\text{Var}(X_i) + \text{Var}(W_i)E[X_i]^2
 \]
 - If the \(X_i \) and \(W_i \) are all i.i.d. then
 \[
 \text{Var}(Y) = \text{Var}(W_1X_1 + W_2X_2 + \cdots + W_nX_n) = n\text{Var}(W_i)\text{Var}(X_i)
 \]
 - The variance of the output is the variance of the input, but scaled by \(n \) \(\text{Var}(W_i) \).

Sidenote

- When sampling weights from a uniform distribution \([a, b]\)
 - Again keep in mind that the standard deviation is computed as
 \[
 \sigma = \frac{1}{12}(b - a)^2
 \]
 - Glorot initialization with uniform distribution
 \[
 W \sim U\left[-\frac{\sqrt{6}}{\sqrt{\text{fan-in}} + \text{fan-out}}, \frac{\sqrt{6}}{\sqrt{\text{fan-in}} + \text{fan-out}} \right]
 \]
 - Or when only taking into account the fan-in
 \[
 W \sim U\left[-\frac{\sqrt{6}}{\sqrt{\text{fan-in}}} \right]
 \]
 - If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years earlier…

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Analysis (cont’d)

- Variance of neuron activations
 - If we want the variance of the input and output of a unit to be the same, then \(\text{Var}(W_i) \) should be 1. This means
 \[
 \text{Var}(W_i) = \frac{1}{n} \implies \text{Var}(W_i) = \frac{1}{n}\text{Var}(X_i)
 \]
 - If we do the same for the backpropagated gradient, we get
 \[
 \text{Var}(W_i) = \frac{1}{n}\text{Var}(X_i)
 \]
 - As a compromise, Glorot & Bengio proposed to use
 \[
 \text{Var}(W_i) = \frac{2}{n\text{fan-in} + n\text{fan-out}}
 \]
 - Randomly sample the weights with this variance. That’s it.

Extension to ReLU

- Important for learning deep models
 - Rectified Linear Units (ReLU)
 \[
 g(a) = \max(0, a)
 \]
 - Effect: gradient is propagated with a constant factor
 \[
 \frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0 \\ 0, & \text{else} \end{cases}
 \]
 - We can also improve them with proper initialization
 - However, the Glorot derivation was based on tanh units, linearly assumption around zero does not hold for ReLU.
 - He et al. made the derivations, derived to use instead

Batch Normalization [Ioffe & Szegedy ‘14]

- Motivation
 - Optimization works best if all inputs of a layer are normalized.
- Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients
- Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.
 - Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)
- Effect
 - Much improved convergence (but parameter values are important!)
 - Widely used in practice
Dropout

Srivastava, Hinton '12

Idea
- Randomly switch off units during training.
- Change network architecture for each data point, effectively training many different variants of the network.
- When applying the trained network, multiply activations with the probability that the unit was set to zero.

\[\Rightarrow \] Greatly improved performance

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
 - Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
 - Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Neural Networks for Computer Vision

How should we approach vision problems?

Architectural considerations
- Input is 2D
- No pre-segmentation
- Need robustness to misalignments
- Vision is hierarchical
- Hierarchical multi-layered structure
- Vision is difficult
- Network should be deep

Why Hierarchical Multi-Layered Models?

Motivation 1: Visual scenes are hierarchically organized

Why Hierarchical Multi-Layered Models?

Motivation 2: Biological vision is hierarchical, too

Inspiration: Neuron Cells

Slide adapted from Richard Turner

Slide credit: Svetlana Lazebnik, Rob Fergus
Hubel/Wiesel Architecture
 - Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

What's Wrong With Standard Neural Networks?
- Complexity analysis
 - How many parameters does this network have?
 \[|\theta| = 3D^2 + D \]
 - For a small 32 x 32 image
 \[|\theta| = 3 \cdot 32^4 + 32^2 \approx 3 \cdot 10^6 \]
- Consequences
 - Hard to train
 - Need to initialize carefully
 - Convolutional nets reduce the number of parameters!

Why Hierarchical Multi-Layered Models?
- Motivation 3: Shallow architectures are inefficient at representing complex functions

Convolutional Networks: Intuition
- Fully connected network
 - E.g. 1000 x 1000 image
 - 1M hidden units
 - \(10^8\) parameters!

Convolutional Networks: Intuition
- Locally connected net
 - E.g. 1000 x 1000 image
 - 1M hidden units
 - \(10 \times 10\) receptive fields
 - \(100\)M parameters!
Convolutional Networks: Intuition

- Convolutional net
 - Share the same parameters across different locations
 - Convolutions with learned kernels

- Learn multiple filters
 - E.g. 1000 × 1000 image
 - 100 filters
 - 10 × 10 filter size
 - ⇒ 10k parameters

- Result: Response map
 - size: 1000 × 1000 × 10
 - Only memory, not params!

Important Conceptual Shift

- Before
- Now:

- Convolution Layers

- Example image: 32 × 32 × 3 volume

 - Before: Full connectivity
 - 32 × 32 × 3 weights

 - Now: Local connectivity
 - One neuron connects to, e.g., 5 × 5 × 3 region.
 - ⇒ Only 5 × 5 × 3 shared weights.

Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth

Naming convention:
Convolution Layers

- Replicate this column of hidden neurons across space, with some stride.

Example:
7 × 7 input
assume 3 × 3 connectivity
stride 1

⇒ 5 × 5 output

What about stride 2?

Slide credit: FeiFei Li, Andrej Karpathy
Convolution Layers

- Replicate this column of hidden neurons across space, with some *stride*.

Example:
- 7×7 input
- assume 3×3 connectivity
- stride 1
 ⇒ 5×5 output

What about stride 2?

- Replicate this column of hidden neurons across space, with some *stride*.

Example:
- 7×7 input
- assume 3×3 connectivity
- stride 1
 ⇒ 5×5 output

What about stride 2?

- In practice, common to zero-pad the border.
 → Preserves the size of the input spatially.

Activation Maps of Convolutional Filters

Each activation map is a depth slice through the output volume.

Effect of Multiple Convolution Layers

Convolutional Networks: Intuition

- Let’s assume the filter is an eye detector
 → How can we make the detection robust to the exact location of the eye?
Convolutional Networks: Intuition

- Let's assume the filter is an eye detector.
 - How can we make the detection robust to the exact location of the eye?

- Solution:
 - By pooling (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.

Max Pooling

- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

Max Pooling

- Note
 - Pooling happens independently across each slice, preserving the number of slices.

CNNs: Implication for Back-Propagation

- Convolutional layers
 - Filter weights are shared between locations
 - Gradients are added for each filter location.

References and Further Reading

- More information on many practical tricks can be found in Chapter 1 of the book

- ReLu

- Initialization
References and Further Reading

- **Batch Normalization**

- **Dropout**