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Overview

» Goal: implement a simple DL framwork from scratch
» Tasks:

» Compute derivatives (Jacobians)
» Write code
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What's the plan?

» Exercise overview
» Deep learning in a nutshell

» Backprop in detail
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Deep Learning in a Nutshell

Given:

> Training data X = {x;};—1._n with x; € I, usually as X € RV*N
> Training labels T = {t;};—1. n with t; €O

( O e



Deep Learning in a Nutshell

Given:

> Training data X = {x;};—1._n with x; € I, usually as X € RV*N
> Training labels T = {t;};—1..n with t; €O

Choose

> Parameterized, (sub-)differentiable function F(X,0):IxP — O, with

> typically, input-space I =RM (generic data), I = R3xHxW

(images), ...

> typically, output-space @ = RNe (regression), @ = [0,1]Ve
(probabilistic classification), ...

> typically, parameter-space P = RVP

> (Sub-)differentiable criterion/loss Z(T,F(X,0)):0x0—R
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Backprop
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Backprop
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=N ;DFg(thF(Xia 6))- DoF(xi,0)
Assumption:

F is hierarchical: F(x,-,@) = fl(f-z(fé(...X,'...,93),92),91)
Dg, F(xi,0) = De, f1(f2,61)

Dg, F(xi,0) = Dg,f1(f2,61) - Do, 2(f3, 02)

Do, F(xi,0) = Dy, fi(f,01) - Dg,f2(f3,62) - Do, f3(. .., 03)
Where f, = f2(f3(...X;...,93),92) etc.



Jacobians

The loss:

D/:f(t,',F(X,',G)) = (8F1£
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Jacobians

The loss:

Dr((t;, F(xi,0)) = (9 ¢
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Modules

Looking at module f:

output
——
input

Py
Do, F(xi,0) = [Dg, fi(f2,01)] [D, 2 13, 62)][De, 5(. -, 63)]

grad_output Jacobian wrt. input

grad _input

Three (core) functions per module:

fprop: compute the output f;(z, 8;) given the input z and current parameters 6;
grad _input: compute grad _output- D, f;(z, 6;)

grad_param: compute Vg, = grad_ output- D, f;(z, 6;)

Typically:

fprop caches its input and/or output for later reuse

grad _input and grad param are combined into single bprop function to share

computation
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Usage/Training

1. net = [f1,f2,...,fy,],{ = criterion
2: for Xb, Th in batched X, T do
3: z=Xb

4: for module in net do

5: z = module.fprop(z)

6: end for

7 costs = {.fprop(z, Tb)

8: az:ﬁ.bprop([NiB...NiB])

9: for module in reversed(net) do
10: dz = module.bprop(dz)

11: end for

12: for module in net do

13: 0,00 = module.params(), module.grads()
14: 6=6—-1-96

15: end for
16: end for (’) —l
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Example: Linear aka. Fully-connected module

f(z,W,b)=z- W +bec RN

Where z € RN W e RN=xNe p ¢ RI*NF and
grad_output = D¢l(f(z, W, b)) € R*Nr
The gradients are

» RN=xNf 5 grad W =27 -grad output

» RY*Nf 5 grad b= grad output

» RNz 5 grad input = grad output- W7



Gradient Checking

Crucial debugging method!

Compare Jacobian computed by finite differences using the fprop function to

Jacobian computed by the bprop function.

Advice: Use (small) random input x, and h; = ,/epsmax(x;,1).

Finite-difference: first column of Jacobian as:
X_ = (xl—hl X2 X3 ... XNX)

Xy = (X1+h1 X2 X3 ... XNX)

4. . fprop(xs) — fprop(x-)
o1 =

’ 2h
Backprop: first row of Jacobian as:

fprop(x)

Jie=bprop(1 0 0 ... 0)
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Mini-Batching
Linear layer (without mini-batching)

f(z,W,b)=z-W+b
z e RNz W ¢ RN=xNr | p c RIXNf
Stack z into mini-batch matrix with batch size N = z € RV*Nz

Now the multiplication z- W can be performed for all examples in one
pass and b can be added by broadcasting (repeating) b to b
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Rule-of-thumb result on MNIST

Linear(28 x 28, 10), Softmax should give £750 errors.

Linear(28 x 28,200), tanh, Linear(200,10), SoftMax should give
£250 errors.

Typical learning rates A € [0.1,0.01]
Typical batch-sizes Ng € [100,1000]
Initialize weights as RM*N 5 W ~ _#(0,0 = ,/ﬁ) and b=0

Don't forget data pre-processing, here at least divide values by 255
(max pixel value).



