Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Recap: Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function
 \[E(W) = \sum_{n} L(t_n, y(x_n; W)) + \lambda \Omega(W) \]
 - E.g., \(L(t, y(x; W)) = \sum_{n} (y(x_n; W) - t_n)^2 \) \(L_2 \) loss
 \[\Omega(W) = \|W\|^2 \]
 - \(L_2 \) regularizer ("weight decay")
 \[\Rightarrow \text{Update each weight } W_{ij} \text{ in the direction of the gradient} \]

Recap: Backpropagation Algorithm

- Core steps
 1. Convert the discrepancy between each output and its target value into an error derivate.
 \[\frac{\partial E}{\partial y_j} = -(t_j - y_j) \]
 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
 3. Use error derivatives w.r.t. activities to get error derivatives w.r.t. the incoming weights.
Recap: Backpropagation Algorithm

\[
\frac{\partial E}{\partial z_j} = \sum_j \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_j} = \sum_j \frac{\partial E}{\partial y_i} w_{ji} = \frac{\partial E}{\partial y_i} (1 - y_i) \frac{\partial E}{\partial y_i}
\]

- Efficient propagation scheme
 - \(y_i\) is already known from forward pass! (Dynamic Programming)
 - Propagate back the gradient from layer \(j\) and multiply with \(y_i\).

Recap: MLP Backpropagation Algorithm

- Forward Pass
 \[y^{(0)} = x\]
 \[\text{for } k = 1, \ldots, l \text{ do}\]
 \[z^{(k)} = W^{(k)} y^{(k-1)}\]
 \[y^{(k)} = g_k(u^{(k)})\]
 \[\text{endfor}\]
 \[y = y^{(l)}\]
 \[E = L(t, y) + \lambda \Omega(W)\]

- Backward Pass
 \[h \leftarrow \frac{\partial E}{\partial y} = \frac{\partial E}{\partial z} L(t,y) + \lambda \frac{\partial \Omega(W)}{\partial y}\]
 \[\text{for } k = l, l-1, \ldots, 1 \text{ do}\]
 \[h \leftarrow h + g'(y^{(k)})\]
 \[\frac{\partial E}{\partial W^{(k)}} = h y^{(k-1)T} + \lambda \frac{\partial \Omega(W)}{\partial W^{(k)}}\]
 \[\text{endfor}\]

- Notes
 - For efficiency, an entire batch of data \(X\) is processed at once.
 - \(\bar{\cdot}\) denotes the element-wise product.

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Computational Graphs

- We can think of mathematical expressions as graphs
 - E.g., consider the expression
 \[e = (a + b) \cdot (b + 1)\]
 - We can decompose this into the operations
 \[c = a + b\]
 \[d = b + 1\]
 \[e = c \cdot e\]

- General rule: sum over all possible paths from \(Y\) to \(X\) and multiply the derivatives on each edge of the path together.

Factoring Paths

- Problem: Combinatorial explosion
 - Example:
 - There are 3 paths from \(X\) to \(Y\) and 3 more from \(Y\) to \(Z\).
 - If we want to compute \(\frac{\partial Z}{\partial X}\), we need to sum over 3 \times 3 paths:
 \[
 \frac{\partial Z}{\partial X} = \alpha \delta + \alpha \epsilon + \alpha \zeta + \beta \eta + \beta \zeta + \gamma \delta + \gamma \epsilon + \gamma \zeta
 \]
 - Instead of naively summing over paths, it's better to factor them
 \[
 \frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma) \cdot (\delta + \epsilon + \zeta)
 \]

Efficient Factored Algorithms

- Forward Mode Differentiation \(\frac{\partial}{\partial X}\)
 \[\Delta x = 1\]
 \[\Delta z = \Delta x \cdot \frac{\partial z}{\partial x}\]

- Reverse Mode Differentiation \(\frac{\partial}{\partial \theta}\)
 \[\Delta \theta = \Delta z \cdot \frac{\partial \theta}{\partial z}\]
 \[\Delta x = 1\]

- Efficient algorithms for computing the sum
 - Instead of summing over all of the paths explicitly, compute the sum more efficiently by merging paths back together at every node.
Why Do We Care?

- Let's consider the example again
 - Using forward-mode differentiation from \(b \) up...
 - Runtime: \(O(\#\text{edges}) \)
 - Result: derivative of every node with respect to \(b \).

Slide inspired by Christopher Olah

Image source: Christopher Olah, colah.github.io

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Obtaining the Gradients

- Approach 4: Automatic Differentiation

 Convert the network into a computational graph. Each new layer/module just needs to specify how it affects the forward and backward passes. Apply reverse-mode differentiation. Very general algorithm, used in today’s Deep Learning packages.

Slide inspired by Christopher Olah

Image source: Christopher Olah, colah.github.io

Modular Implementation

- Solution in many current Deep Learning libraries
 - Provide a limited form of automatic differentiation
 - Restricted to “programs” composed of “modules” with a predefined set of operations.
- Each module is defined by two main functions
 1. Computing the outputs \(y \) of the module given its inputs \(x \)
 \[
 y = \text{module}.\text{fprop}(x)
 \]
 where \(x, y \), and intermediate results are stored in the module.
 2. Computing the gradient \(\partial E/\partial x \) of a scalar cost w.r.t. the inputs \(x \) given the gradient \(\partial E/\partial y \) w.r.t. the outputs \(y \)
 \[
 \frac{\partial E}{\partial x} = \text{module}.\text{bprop}(\frac{\partial E}{\partial y})
 \]

Slide inspired by Christopher Olah

Image source: Christopher Olah, colah.github.io

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization
Implementing Softmax Correctly

- Softmax output
 - De-facto standard for multi-class outputs
 \[E(w) = - \sum_{n=1}^{N} \sum_{k=1}^{K} \left[I(t_n = k) \ln \frac{\exp(w_k x_n)}{\sum_{j=1}^{J} \exp(w_j x_n)} \right] \]

- Practical issue
 - Exponentials get very big and can have vastly different magnitudes.
 - **Trick 1**: Do not compute first softmax, then log, but instead directly evaluate \(\log(\text{exp}(\text{something})) \) in the denominator.
 - **Trick 2**: Softmax has the property that for a fixed vector \(b \)
 \[\text{softmax}(a + b) = \text{softmax}(a) \]
 \(\Rightarrow \) Subtract the largest weight vector \(w \), from the others.

Gradient Descent

- Two main steps
 1. Computing the gradients for each weight (last lecture)
 2. Adjusting the weights in the direction of the gradient (today)

- Recall: Basic update equation
 \[w^{(r+1)} = w^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]

- Main questions
 - On what data do we want to apply this?
 - How should we choose the step size \(\eta \) (the learning rate)?
 - In which direction should we update the weights?

Stochastic vs. Batch Learning

- Batch learning
 - Process the full dataset at once to compute the gradient.
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]

- Stochastic learning
 - Choose a single example from the training set.
 - Compute the gradient only based on this example
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_{n}(w)}{\partial w_{kj}} \]

 - This estimate will generally be noisy, which has some advantages.

Minibatches

- Idea
 - Process only a small batch of training examples together
 - Start with a small batch size & increase it as training proceeds.

- Advantages
 - Gradients will more stable than for stochastic gradient descent, but still faster to compute than with batch learning.
 - Take advantage of redundancies in the training set.
 - Matrix operations are more efficient than vector operations.

- Caveat
 - Error function should be normalized by the minibatch size, s.t. we can keep the same learning rate between minibatches
 \[E(W) = \frac{1}{N} \sum_{n} L(t_n, y(x_n; W)) + \frac{1}{N} \Omega(W) \]
Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent
 » Consider a simple 1D example first
 \[W^{t+1} = W^t - \eta \frac{dE(W)}{dW} \]
 » What is the optimal learning rate \(\eta_{opt} \)?

 If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian:
 \[\eta_{opt} = \left(\frac{d^2E(W^t)}{dW^2} \right)^{-1} \]
 » What happens if we exceed this learning rate?

Learning Rate vs. Training Error

• Batch vs. Stochastic Learning
 » Batch Learning
 » Simplest case: steepest decent on the error surface.
 » Updates perpendicular to contour lines
 » Stochastic Learning
 » Simplest case: zig-zag around the direction of steepest descent.
 » Updates perpendicular to constraints from training examples.
Why Learning Can Be Slow

- If the inputs are correlated
 - The ellipse will be very elongated.
 - The direction of steepest descent is almost perpendicular to the direction towards the minimum!

This is just the opposite of what we want!

The Momentum Method

- Idea
 - Instead of using the gradient to change the position of the weight "particle", use it to change the velocity.

- Intuition
 - Example: Ball rolling on the error surface
 - It starts off by following the error surface, but once it has accumulated momentum, it no longer does steepest decent.

- Effect
 - Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
 - Build up speed in directions with a gentle but consistent gradient.

The Momentum Method: Implementation

- Change in the update equations
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.
 \[v(t) = \alpha v(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]
 - Set the weight change to the current velocity
 \[\Delta w = v(t) \]
 \[= \alpha v(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]
 \[= \alpha \Delta w(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]

The Momentum Method: Behavior

- Behavior
 - If the error surface is a tilted plane, the ball reaches a terminal velocity
 \[v(\infty) = \frac{1}{1 - \alpha} \left(-\frac{\partial E}{\partial w} \right) \]
 - If the momentum α is close to 1, this is much faster than simple gradient descent.
 - At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., $\alpha = 0.5$).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha = 0.90$ or even $\alpha = 0.99$).
 - This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.
 - The fan-in of a unit determines the size of the "overshoot" effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers

- Solution
 - Use a global learning rate, multiplied by a local gain per weight (determined empirically)
Better Adaptation: RMSProp

- **Motivation**
 - The magnitude of the gradient can be very different for different weights and can change during learning.
 - This makes it hard to choose a single global learning rate.
 - For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

- **Idea of RMSProp**
 - Divide the gradient by a running average of its recent magnitude
 \[
 \text{MeanSq}(w_{ij}, t) = 0.9 \text{MeanSq}(w_{ij}, t - 1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t) \right)^2
 \]
 - Divide the gradient by \(\text{sqrt}(\text{MeanSq}(w_{ij}, t)) \).

Other Optimizers

- **AdaGrad** [Duchi ’10]
- **AdaDelta** [Zeiler ’12]
- **Adam** [Ba & Kingma ’14]

- **Notes**
 - All of those methods have the goal to make the optimization less sensitive to parameter settings.
 - Adam is currently becoming the quasi-standard

Behavior in a Long Valley

Behavior around a Saddle Point

Visualization of Convergence Behavior

Trick: Patience

- Saddle points dominate in high-dimensional spaces!

\[\begin{align*}
\text{Learning often doesn’t get stuck, you just may have to wait...} \\
\end{align*} \]
Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

- Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower/impossible after that.

Summary

- Deep multi-layer networks are very powerful.
- But training them is hard!
 - Complex, non-convex learning problem
 - Local optimization with stochastic gradient descent
- Main issue: getting good gradient updates for the lower layers of the network
 - Many seemingly small details matter!
 - Weight initialization, normalization, data augmentation, choice of nonlinearities, choice of learning rate, choice of optimizer,…
 - In the following, we will take a look at the most important factors (to be continued in the next lecture…)

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - Stochastic Gradient Descent & Minibatches
 - Choosing Learning Rates
 - Momentum
 - RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Shuffling the Examples

- Ideas
 - Networks learn fastest from the most unexpected sample.
 - E.g. a sample from a different class than the previous one.
 - This means, do not present all samples of class A, then all of class B.
 - A large relative error indicates that an input has not been learned by the network yet, so it contains a lot of information.
 - It can make sense to present such inputs more frequently.
 - But: be careful, this can be disastrous when the data are outliers.

- Practical advice
 - When working with stochastic gradient descent or minibatches, make use of shuffling.

Data Augmentation

- Idea
 - Augment original data with synthetic variations to reduce overfitting

- Example augmentations for images
 - Cropping
 - Zooming
 - Flipping
 - Color PCA

- Effect
 - Much larger training set
 - Robustness against expected variations

- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.
Perceptual and Sensory Augmented Computing

Practical Advice

APPLY ALL
THE AUGMENTATIONS

Normalization

• Motivation
 - Consider the Gradient Descent update steps
 \[w^{(t+1)}_{kj} = w^{(t)}_{kj} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]
 - From backpropagation, we know that
 \[\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial z_j} \cdot \frac{\partial E}{\partial y_i} \cdot \frac{\partial z_j}{\partial y_i} \]
 - When all of the components of the input vector \(y_i \) are positive, all of the updates of weights that feed into a node will be of the same sign.
 \[\Rightarrow \text{Weights can only all increase or decrease together.} \]
 \[\Rightarrow \text{Slow convergence} \]

Normalization of the Inputs

• Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loève expansion).

References and Further Reading

• More information on many practical tricks can be found in Chapter 1 of the book

G. Montavon, G. B. Orr, K.-R. Müller (Eds.)
Neural Networks: Tricks of the Trade

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller