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Topics of This Lecture Recap: Learning with Hidden Units
* Learning Multi-layer Networks * How can we train multi-layer networks efficiently?
- Recap: Backpropagation » Need an efficient way of adapting all weights, not just the last layer.
» Computational graphs
» Automatic differentiation
» Practical issues * Idea: Gradient Descent
¢ Gradient Descent » Set up an error function
» Stochastic Gradient Descent & Minibatches ~
~ » Choosing Learning Rates ~ E(W) = LL(L” y(xn; W)) + AR(W)
S b n
2 - Momentum £ with aloss L(+) and a regularizer Q(-).
B » RMS Prop s 5
E » Other Optimizers = > Eg, Lltya W) =3, (u(xa; W) — ) L, loss
€ €
&1 * Tricks of the Trade § QIW) = | W2 L, regularizer
e . Shuffling e (“weight decay”)
S - Data Augmentation 3 Update each weight T "in the direction of the gradient Z20%
& 2 & = Up! g ij g AW
» Normalization 3 Y
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Gradient Descent Recap: Backpropagation Algorithm
* Two main steps * Core steps 1 5
1. Computing the gradients for each weight last lecture 1. Convert the discrepancy E= 3 Z (t; — )
between each output and its i€output
2. Adjusting the weights in the direction of today target value into an error dE t )
the gradient i i U A
g derivate. Ay,
ain
2. Compute error derivatives in thy
= = each hidden layer from error
3 8 derivatives in the layer above. .
£ £ & O
= = i
2 2
E g 3. Use error derivatives w.r.t. . .
3 2 activities to get error derivatives OF _, 9E
2 2 w.r.t. the incoming weights f)y?— Oy,
= =
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Recap: Backpropagation Algorithm

0B _oyoE | 0F
9z, 0z oy U My

OE z; OF OE
ow T a0 2

OE 0z OE _9F
O dwy;  dwy 0z Vo
» Efficient propagation scheme
» y; is already known from forward pass! (Dynamic Programming)
= Propagate back the gradient from layer j and multiply with ;.
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Topics of This Lecture
* Learning Multi-layer Networks
» Recap: Backpropagation
» Computational graphs
» Automatic differentiation
» Practical issues
B. Leibe
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Factoring Paths

* Problem: Combinatorial explosion
» Example:

)
T
: : .
A N

» There are 3 paths from X to Y'and 3 more from Y'to Z.

» If we want to compute % we need to sum over 3x3 paths:
a7z - -
X = ad + we + ol + 36 + e + 3 + 48 + e + ¢

» Instead of naively summing over paths, it's better to factor them
07
;—X =(a+F+79)*x(d+e+C)

11
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Recap: MLP Backpropagation Algorithm
* Forward Pass * Backward Pass
Yy = x he §F = ZL(ty) + A0

for k=1,...,1do
2% — W(L')y(k: 1)

for k=1-1,...,.1do
he 25 —hog(y™)

) oF — an
¥y = g (2 ol = hy(h=UT 4 288
endfor h ¢ ez ‘:’;"il) = WHTh

) 'y
y=y' endfor

E =L{t,y) + A\Q(W)

* Notes
» For efficiency, an entire batch of data X is processed at once.
» © denotes the element-wise product
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Computational Graphs

* We can think of mathematical expressions as graphs

» E.g., consider the expression
e = (a+b)+(b+1)
> We can decompose this into / \

the operations
¢ = a+b

d = b+1 /

e = cxd

and visualize this as a computational graph.

. . . . oy .
* Evaluating partial derivatives 7y in such a graph
» General rule: sum over all possible paths from Y'to X
and multiply the derivatives on each edge of the path together.
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Efficient Factored Algorithms

Forward-Mode Differentiation (%)

« [
I

ax I s i
A N

Reverse-Mode Differentiation (‘%}

)
S
e
N A N
* Efficient algorithms for computing the sum

» Instead of summing over all of the paths explicitly, compute
the sum more efficiently by merging paths back together at
every node.

Apply operator %
to every node.

Apply operator
to every node.

DE
i
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Why Do We Care? Why Do We Care?
* Let's consider the example again * Let's consider the example again
» Using forward-mode differentiation » Using reverse-mode differentiation
from b up... from e down...

Runtime: O(#edges)

v
v

Runtime: O(#edges)

5

Result: derivative of every node » Result: derivative of e with

with respect to b. m m respect to every node. m

= This is what we want to compute in Backpropagation!

» Forward differentiation needs one pass per node. With backward
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!
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Topics of This Lecture Obtaining the Gradients
* Learning Multi-layer Networks * Approach 4: Automatic Differentiation

» Recap: Backpropagation w(x) ga(x)  glx)

» Computational graphs

» Automatic differentiation 12

» Practical issues %‘,\ /50_\

« — C-E-@
) LA A
= =
3 3
E £
= = ) )
2 = » Convert the network into a computational graph.
£ £ » Each new layer/module just needs to specify how it affects the
% % forward and backward passes.
:FE; % » Apply reverse-mode differentiation.
< 2 = Very general algorithm, used in today’s Deep Learning packages
B. Leibe T B. Leibe
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Modular Implementation Topics of This Lecture
¢ Solution in many current Deep Learning libraries
» Provide a limited form of automatic differentiation

» Restricted to “programs” composed of “modules” with a
predefined set of operations.

* Learning Multi-layer Networks
» Recap: Backpropagation
» Computational graphs
» Automatic differentiation
» Practical issues
* Each module is defined by two main functions
1. Computing the outputs y of the module given its inputs X

vy = module.fprop(x)

where X, y, and intermediate results are stored in the module.

2. Computing the gradient 6E/0x of a scalar cost w.r.t. the
inputs X given the gradient 0E/dy w.r.t. the outputs y

ix

= module.bprop( W)

~ ~
5 5
= =
j=2] j=J
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Implementing Softmax Correctly Topics of This Lecture
* Softmax output
» De-facto standard for multi-class outputs
XXt Wi X
Ew) = | I (ta = k)In Ke"p( k )>
n=1k=1 =1 exp(Wj X)
o * Gradient Descent
* Practical issue » Stochastic Gradient Descent & Minibatches
= » Exponentials get very big and can have vastly different magnitudes. = » Choosing Learning Rates
g » Trick 1: Do not compute first softmax, then log, 8 » Momentum
§ but instead directly evaluate log-exp in the denominator. § » RMS Prop
é’ » Trick 2: Softmax has the property that for a fixed vector b é’ » Other Optimizers
E softmax(a + b) = softmax(a) 8
2 = Subtract the largest weight vector w ; from the others. 2
E i
s =
19 2
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Gradient Descent Stochastic vs. Batch Learning
* Two main steps * Batch learning
1. Computing the gradients for each weight last lecture » Process the full dataset at (e+1) (). 3E(W):
once to compute the Wi =Wt ion o
2. Adjusting the weights in the direction of today gradient. ki wie
the gradient
» Recall: Basic update equation
= (e+1) @ . . OBW)- = + Stochastic learning
5 W =Wy 1T 5 i OFn (W)—
£ oW ) £ - Choose asingle example  (;+1) _ (g) . n (W)=
= = from the training set. kj = Wy o Dwki “
E’ * Main questions g » Compute the gradient only bowt
8 . On what data do we want to apply this? 8 ba§ed on this e).(ample
2 . How should we choose the step size 7 (the learning rate)? 2 » This estimate will generally
S . o e 5 be noisy, which has some
= » In which direction should we update the weights? & advantages.
B. Leibe 2 B. Leibe 2
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Stochastic vs. Batch Learning Minibatches
¢ Batch learning advantages * Idea

» Conditions of convergence are well understood.

» Many acceleration techniques (e.g., conjugate gradients) only
operate in batch learning.

Theoretical analysis of the weight dynamics and convergence rates
are simpler.

» Process only a small batch of training examples together
» Start with a small batch size & increase it as training proceeds.

* Advantages
» Gradients will more stable than for stochastic gradient descent,
but still faster to compute than with batch learning.
» Take advantage of redundancies in the training set.
» Matrix operations are more efficient than vector operations.

v

* Stochastic learning advantages
» Usually much faster than batch learning.
» Often results in better solutions.

* Caveat
» Can be used for tracking changes.

» Error function should be normalized by the minibatch size,
s.t. we can keep the same learning rate between minibatches

- g 1 \
Middle ground: Minibatches E(W) = N ZL(t..!y(xn:W)) i _\IQ(W)
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5 5
= =
j=2] j=J
= =
£ =
g g
— -
o @
= =
- ‘-
o o
] o
= =

23

24
B. Leibe

B. Leibe




Topics of This Lecture

* Gradient Descent

Stochastic Gradient Descent & Minibatches
Choosing Learning Rates

» Momentum

» RMS Prop

» Other Optimizers

v

v
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Choosing the Right Learning Rate

* Behavior for different learning rates

Efw) Elw)

\ N < Ny
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Topics of This Lecture

¢ Gradient Descent
» Stochastic Gradient Descent & Minibatches
» Choosing Learning Rates
> Momentum
> RMS Prop
» Other Optimizers
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Choosing the Right Learning Rate

* Analyzing the convergence of Gradient Descent
» Consider a simple 1D example first Etm

dE(W)

N 1 e

wir—b — win) - 22 )
n aw

- Whatis the optimal learning rate 7),,,,?

b) O
» If Eis quadratic, the optimal learning rate is given by the inverse of

the Hessian )
_ d2E(W)
Nopt = —anz

» What happens if we exceed this learning rate?
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Learning Rate vs. Training Error

Do not go beyond
this point!

ity 1! 10
Learning rate (logarithmic scale)
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Batch vs. Stochastic Learning

* Batch Learning

» Simplest case: steepest decent ~
on the error surface. t %
= Updates perpendicular to contour w1 / @
lines -t&/
w2 — "
= ¢ Stochastic Learning
g » Simplest case: zig-zag around the
3 direction of steepest descent. \
g = Updates perpendicular to constraints 1
s from training examples. w1
=
é w2 — N
de adapted from Geoff Hinton B. Leibe Jmage source: Geoff Hintor




Why Learning Can Be Slow The Momentum Method
¢ |f the inputs are correlated
» The ellipse will be very elongated.

» The direction of steepest descent is
almost perpendicular to the direction
towards the minimum!

* |dea

» Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

* Intuition
» Example: Ball rolling on the error surface

» It starts off by following the error surface, but once it has
accumulated momentum, it no longer does steepest decent.

* Effect
» Dampen oscillations in directions of high
curvature by combining gradients with
opposite signs.
» Build up speed in directions with a
gentle but consistent gradient.

This is just the opposite of what we want!

Machine Learning Winter ‘17
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The Momentum Method: Implementation

TWTH A
The Momentum Method: Behavior

* Change in the update equations
» Effect of the gradient: increment the previous velocity, subject to a

* Behavior
» If the error surface is a tilted plane, the ball reaches a terminal

decay by o < 1. velocil .
™ OF o () 1 JFE
/ V(o) = —e—
v(t) = av(t—1)— Ea_w(t) 1-a ow
— If the momentum « is close to 1, this is much faster than simple
» Set the weight change to the current velocity gradient descent.
= Aw = v(f) = » At the beginning of learning, there may be very large gradients.
g - cw(t 1) :E (t) g — Use a small momentum initially (e.g., « = 0.5).
= ow 5 — Once the large gradients have disappeared and the weights are stuck
2 aE 2 in a ravine, the momentum can be smoothly raised to its final value
£ = alAw(t—1)— Ea_(t) £ (e.g., o =0.900revena = 0.99).
B w ﬁ
% E = This allows us to learn at a rate that would cause divergent
S S oscillations without the momentum.
= 33 = 34
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Separate, Adaptive Learning Rates Separate, Adaptive Learning Rates

* Problem
» In multilayer nets, the appropriate learning rates
can vary widely between weights.
» The magnitudes of the gradients are often very
different for the different layers, especially
if the initial weights are small.

= Gradients can get very small in the early layers
of deep nets.

* Problem

» In multilayer nets, the appropriate learning rates
can vary widely between weights.

» The magnitudes of the gradients are often very
different for the different layers, especially
if the initial weights are small.

= Gradients can get very small in the early layers
of deep nets.

» The fan-in of a unit determines the size of the
“overshoot” effect when changing multiple weights
simultaneously to correct the same error.

— The fan-in often varies widely between layers

* Solution

» Use a global learning rate, multiplied by a local gain per weight
(determined empirically)

~ ~
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Better Adaptation: RMSProp

* Motivation

» The magnitude of the gradient can be very different for different
weights and can change during learning.
This makes it hard to choose a single global learning rate.

For batch learning, we can deal with this by only using the sign of the
gradient, but we need to generalize this for minibatches.

v

v

* |dea of RMSProp
» Divide the gradient by a running average of its recent magnitude

MeanSq(w;;,t) = 0.9MeanSq(w;;,t — 1) + 0.1 (BiE (t))
i

~ Divide the gradient by sqrt(MeanSq(w;;t)).

. 37
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Behavior in a Long Valley

SGD
= Momentum
- NAG

-~ Adagrad
Adadelta
Rmsprop

B. Leibe
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Visualization of Convergence Behavior

sgd
momentum
nag
adagrad
adadelta
rmsprop

BN

[ 20 40 60 80 100 120
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Other Optimizers
¢ AdaGrad [Duchi *10]
* AdaDelta [Zeiler ’12]
* Adam [Ba & Kingma '14]
* Notes
» All of those methods have the goal to make the optimization less
sensitive to parameter settings.
» Adam is currently becoming the quasi-standard
B. Leibe 38
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Behavior around a Saddle Point
— SGD
~ Momentum
— NAG
-~ Adagrad
Adadelta
Rmsprop
) 05 10-10
B. Leibe lmage sorce Aelc Radiford 40‘
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Trick: Patience

¢ Saddle points dominate in high-dimensional spaces!

Training error (MSE)

&\\, u\%\\ ‘

— Training error (MSE)
e Norm of the gradients

Norm of the gradients

[
NN

\l

00 200 300

= Learning often doesn’t get stuck, you just may have to wait...

B. Leibe
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Reducing the Learning Rate

* Final improvement step after convergence is reached

» Reduce learning rate by a
factor of 10.

Reduced

S ]
» Continue training for a few 5 learning rate
epochs. o
» Do this 1-3 times, then stop :%
training. =
e Effect Epoch

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
» Further progress will be much slower/impossible after that.

Machine Learning Winter ‘17
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Topics of This Lecture

%

£l « Tricks of the Trade

2 » Shuffling

e . Data Augmentation

= » Normalization o o 5
RWTH//CHEN

Data Augmentation

* Idea

» Augment original data with synthetic variations
to reduce overfitting

* Example augmentations for images

- cropping bobolachoby
- zo0ming 5 ™
- Fipping b-1s

. corpea ™ M
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Summary

* Deep multi-layer networks are very powerful.

* But training them is hard!
» Complex, non-convex learning problem
» Local optimization with stochastic gradient descent

* Main issue: getting good gradient updates for the lower
layers of the network

~
?, » Many seemingly small details matter!
g » Weight initialization, normalization, data augmentation, choice of
° nonlinearities, choice of learning rate, choice of optimizer,...
= » In the following, we will take a look at the most important factors
£ (to be continued in the next |e
z
=

. 44
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Shuffling the Examples

* Ideas
» Networks learn fastest from the most unexpected sample.
= It is advisable to choose a sample at each iteration that is most
unfamiliar to the system.
— E.g. asample from a different class than the previous one.
— This means, do not present all samples of class A, then all of class B.

» A large relative error indicates that an input has not been learned
by the network yet, so it contains a lot of information.

= It can make sense to present such inputs more frequently.
— But: be careful, this can be disastrous when the data are outliers.

* Practical advice

» When working with stochastic gradient descent or minibatches,
make use of shuffling.

Machine Learning Winter 17
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Data Augmentation

e T P =
> Much larger training set 8 2
. Robustness against expected “ m “ m] u !
variations
+ During testing bl oo loah
» When cropping was used
during traiFr)1Fi)ngg, need to a . ! ! !‘_;] m
again apply crops to get = S re— e
DR M
Beneficial to also apply = o -
flipping during test. ’ ? ’" E h‘ u
Applying several ColorPCA -
variations can bring another Augmented training data
~1% improvement, but at a (from one original image)

significantly increased runtime.
B. Leibe
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Practical Advice

ARRLY,

THE'AUGMENTATIONS

mi tor.net
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Normalizing the Inputs

* Convergence is fastest if

» The mean of each input variable
over the training set is zero.

» The inputs are scaled such that

Mean
Cancellation

; -
all have the same covariance. Expnsion
» Input variables are uncorrelated 4 R
if possible. Equalization
o2 ey —>

¢ Advisable normalization steps (for MLPs only, not for CNNs)
» Normalize all inputs that an input unit sees to zero-mean,
unit covariance.
» If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).
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Normalization

* Motivation
» Consider the Gradient Descent update steps

D _ (),  OBEW)=
W =Wy Dwn:

ki w()
» From backpropagation, we know that

OE _ 9z OB OF

wy; | dw;; 0z az

25

» When all of the components of the input vector y; are positive, all of
the updates of weights that feed into a node will be of the same sign.

= Weights can only all increase or decrease together.

= Slow convergence

50
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References and Further Reading

* More information on many practical tricks can be found in
Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade
Springer, 1998, 2012

| Neural Networks:
B Tricks of the Trade
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Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
Efficient BackProp, Ch.1 of the above book., 1998.
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