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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
2
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Recap: AdaBoost – “Adaptive Boosting” 

• Main idea [Freund & Schapire, 1996]

 Instead of resampling, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost: 

 Construct a strong classifier as a thresholded linear combination of 

the weighted weak classifiers:

3
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!
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1. Initialization: Set                 for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

®m = ln

½
1¡ ²m

²m

¾

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm

4
B. Leibe

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g
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Recap: AdaBoost – Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
5

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E =¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

6
B. Leibe
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

7
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Decision Trees

• Very old technique

 Origin in the 60s, might seem outdated.

• But…

 Can be used for problems with nominal data

– E.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}.

– Discrete values, no notion of similarity or even ordering.

 Interpretable results

– Learned trees can be written as sets of if-then rules.

 Methods developed for handling missing feature values.

 Successfully applied to broad range of tasks

– E.g. Medical diagnosis

– E.g. Credit risk assessment of loan applicants

 Some interesting novel developments building on top of them…

8
B. Leibe
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Decision Trees

• Example:

 “Classify Saturday mornings according to whether they’re  

suitable for playing tennis.”

9
B. Leibe Image source: T. Mitchell, 1997
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Decision Trees

• Elements

 Each node specifies a test for some attribute.

 Each branch corresponds to a possible value of the attribute.

10
B. Leibe Image source: T. Mitchell, 1997
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Decision Trees

• Assumption

 Links must be mutually distinct and exhaustive

 I.e. one and only one link will be followed at each step.

• Interpretability

 Information in a tree can then be 

rendered as logical expressions.

 In our example:

11
B. Leibe

(Outlook = Sunny ^Humidity = Normal)

_ (Outlook = Overcast)

_ (Outlook = Rain ^Wind =Weak)

Image source: T. Mitchell, 1997



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Training Decision Trees

• Finding the optimal decision tree is NP-hard…

• Common procedure: Greedy top-down growing

 Start at the root node.

 Progressively split the training data into smaller and smaller subsets.

 In each step, pick the best attribute to split the data.

 If the resulting subsets are pure (only one label) or if no further 

attribute can be found that splits them, terminate the tree.

 Else, recursively apply the procedure to the subsets.

• CART framework

 Classification And Regression Trees (Breiman et al. 1993)

 Formalization of the different design choices.

12
B. Leibe
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CART Framework

• Six general questions

1. Binary or multi-valued problem?

– I.e. how many splits should there be at each node?

2. Which property should be tested at a node?

– I.e. how to select the query attribute?

3. When should a node be declared a leaf?

– I.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?

– Goal: reduce overfitting.

5. How to deal with impure nodes?

– I.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

13
B. Leibe
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CART – 1. Number of Splits

• Each multi-valued tree can be converted into an equivalent 

binary tree:

 Only consider binary trees here…

14
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART – 2. Picking a Good Splitting Feature 

• Goal

 Want a tree that is as simple/small as possible (Occam’s razor).

 But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search

 Efficient, but not guaranteed to find the smallest tree.

 Seek a property T at each node sj that makes the data in the child 

nodes as pure as possible.

 For formal reasons more convenient to define impurity i(sj).

 Several possible definitions explored.

15
B. Leibe
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CART – Impurity Measures

• Misclassification impurity

16
B. Leibe

i(P )

P

“Fraction of the 

training patterns 

in category Ck that

end up in node sj.”

Problem:

discontinuous derivative!

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = 1 − max
𝑘

𝑝 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Entropy impurity

17
B. Leibe

i(P )

P

“Reduction in 

entropy = gain in

information.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 = − ෍

𝑘

𝑝 𝐶𝑘 𝑠𝑗 log2 𝑝 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Gini impurity (variance impurity)

18

i(P )

P

“Expected error
rate at node sj if

the category label is 

selected randomly.”

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

𝑖 𝑠𝑗 =෍

𝑘≠𝑙

𝑝 𝐶𝑘 𝑠𝑗 𝑝 𝐶𝑙 𝑠𝑗

=
1

2
1 −෍

𝑘

𝑝2 𝐶𝑘 𝑠𝑗
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CART – Impurity Measures

• Which impurity measure should we choose?

 Some problems with misclassification impurity.

– Discontinuous derivative.

 Problems when searching over continuous parameter space.

– Sometimes misclassification impurity does not decrease when Gini 

impurity would.

 Both entropy impurity and Gini impurity perform well.

– No big difference in terms of classifier performance.

– In practice, stopping criterion and pruning method are often more 

important.

19
B. Leibe



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

CART – 2. Picking a Good Splitting Feature 

• Application

 Select the query that decreases impurity the most

• Multiway generalization (gain ratio impurity):

 Maximize

 where the normalization factor ensures that large K are not 

inherently favored:

20
B. Leibe

Δ𝑖 𝑠𝑗 = 𝑖 𝑠𝑗 − 𝑃𝐿𝑖 𝑠𝑗,𝐿 − 1 − 𝑃𝐿 𝑖(𝑠𝑗,𝑅)

𝑃𝐿 = fraction of 

points at left 

child node 𝑠𝑗,𝐿

Δ𝑖 𝑠𝑗 =
1

𝑍
𝑖 𝑠𝑗 − ෍

𝑚=1

𝑀

𝑃𝑚𝑖(𝑠𝑗,𝑚)

𝑍 = − ෍

𝑚=1

𝑀

𝑃𝑚 log2 𝑃𝑚
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• For efficiency, splits are often based on a single feature

 “Monothetic decision trees”

• Evaluating candidate splits

 Nominal attributes: exhaustive search over all possibilities.

 Real-valued attributes: only need to consider changes in label.

– Order all data points based on attribute xi.

– Only need to test candidate splits where label(xi)  label(xi+1).

CART – Picking a Good Splitting Feature

21
B. Leibe
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CART – 3. When to Stop Splitting

• Problem: Overfitting

 Learning a tree that classifies the training data perfectly may not lead 

to the tree with the best generalization to unseen data.

 Reasons

– Noise or errors in the training data.

– Poor decisions towards the leaves of the tree that are based on very 

little data.

• Typical behavior

22
B. LeibeSlide adapted from Raymond Mooney

hypothesis complexity

a
c
c
u
ra

c
y

on training data

on test data
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CART – Overfitting Prevention (Pruning)

• Two basic approaches for decision trees

 Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make reliable 

decisions.

 Postpruning: Grow the full tree, then remove subtrees that do not 

have sufficient evidence.

• Label leaf resulting from pruning with the majority class of 

the remaining data, or a class probability distribution. 

23
B. Leibe

N

CN = argmax
k

p(CkjN)

N

p(CkjN)

Slide adapted from Raymond Mooney
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Decision Trees – Computational Complexity 

• Given

 Data points {x1,…,xN}

 Dimensionality D

• Complexity

 Storage:

 Test runtime:

 Training runtime:

– Most expensive part.

– Critical step: selecting the optimal splitting point.

– Need to check D dimensions, for each need to sort N data points.

24
B. Leibe

O(DN2 logN)

O(logN)

O(N)

O(DN logN)
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Summary: Decision Trees

• Properties

 Simple learning procedure, fast evaluation.

 Can be applied to metric, nominal, or mixed data.

 Often yield interpretable results.

25
B. Leibe
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Summary: Decision Trees

• Limitations

 Often produce noisy (bushy) or weak (stunted) classifiers.

 Do not generalize too well.

 Training data fragmentation: 

– As tree progresses, splits are selected based on less and less data.

 Overtraining and undertraining:

– Deep trees: fit the training data well, will not generalize well to new test 

data.

– Shallow trees: not sufficiently refined.

 Stability

– Trees can be very sensitive to details of the training points.

– If a single data point is only slightly shifted, a radically different tree may 

come out!

 Result of discrete and greedy learning procedure. 

 Expensive learning step

– Mostly due to costly selection of optimal split. 26
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

27
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Randomized Decision Trees (Amit & Geman 1997)

• Decision trees: main effort on finding good split

 Training runtime: 

 This is what takes most effort in practice.

 Especially cumbersome with many attributes (large D).

• Idea: randomize attribute selection

 No longer look for globally optimal split.

 Instead randomly use subset of K attributes on which to base 

the split.

 Choose best splitting attribute e.g. by maximizing the information 

gain (= reducing entropy):

28
B. Leibe

O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Randomized Decision Trees

• Randomized splitting

 Faster training:                            with               .

 Use very simple binary feature tests.

 Typical choice

– K = 10 for root node.

– K = 100d for node at level d.

• Effect of random split

 Of course, the tree is no longer as powerful as a single classifier…

 But we can compensate by building several trees.

29
B. Leibe

O(KN2 logN) K ¿D
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Ensemble Combination

• Ensemble combination

 Tree leaves (l,´) store posterior probabilities of the target classes.

 Combine the output of several trees by averaging their posteriors 

(Bayesian model combination)

30
B. Leibe

pl;´(Cjx)
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Applications: Character Recognition

• Computer Vision: Optical character recognition

 Classify small (14x20) images of hand-written characters/digits

into one of 10 or 26 classes.

• Simple binary features

 Tests for individual binary pixel

values.

 Organized in randomized tree.

31
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Y. Amit, D. Geman, Shape Quantization and Recognition with Randomized Trees, 

Neural Computation, Vol. 9(7), pp. 1545-1588, 1997.
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Applications: Character Recognition

• Image patches (“Tags”)

 Randomly sampled 44 patches

 Construct a randomized tree

based on binary single-pixel tests

 Each leaf node corresponds to a 

“patch class” and produces a tag

• Representation of digits (“Queries”)

 Specific spatial arrangements of tags

 An image answers “yes” if any such

structure is found anywhere

 How do we know which spatial 

arrangements to look for?

32
B. Leibe
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Slide adapted from Jan Hosang
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Applications: Character Recognition

• Answer: Create a second-level decision tree!

 Start with two tags connected by an arc

 Search through extensions of confirmed queries

(or rather through a subset of them, there are lots!)

 Select query with best information gain

 Recurse…

• Classification

 Average estimated

posterior distribu-

tions stored in 

the leaves.

33
B. LeibeSlide adapted from Jan Hosang
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Applications: Fast Keypoint Detection

• Computer Vision: fast keypoint detection

 Detect keypoints: small patches in the image used for matching

 Classify into one of ~200 categories (visual words)

• Extremely simple features

 E.g. pixel value in a color channel (CIELab)

 E.g. sum of two points in the patch

 E.g. difference of two points in the patch

 E.g. absolute difference of two points

• Create forest of randomized decision trees

 Each leaf node contains probability distribution over 200 classes

 Can be updated and re-normalized incrementally.

34
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Application: Fast Keypoint Detection

35
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M. Ozuysal, V. Lepetit, F. Fleuret, P. Fua, Feature Harvesting for 

Tracking-by-Detection. In ECCV’06, 2006.

http://cvlab.epfl.ch/~vlepetit/papers/ozuysal_eccv06.pdf
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Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 Randomized attribute selection

• Random Forests
 Bootstrap sampling

 Ensemble of randomized trees

 Posterior sum combination

 Analysis

36
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Random Forests (Breiman 2001)

• General ensemble method

 Idea: Create ensemble of many (very simple) trees.

• Empirically very good results

 Often as good as SVMs (and sometimes better)!

 Often as good as Boosting (and sometimes better)!

• Standard decision trees: main effort on finding good split

 Random Forests trees put very little effort in this.

 CART algorithm with Gini coefficient, no pruning.

 Each split is only made based on a random subset of the available 

attributes.

 Trees are grown fully (important!).

• Main secret

 Injecting the “right kind of randomness”.
37

B. Leibe



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Random Forests – Algorithmic Goals

• Create many trees (50 – 1,000)

• Inject randomness into trees such that 

 Each tree has maximal strength

– I.e. a fairly good model on its own

 Each tree has minimum correlation with the other trees.

– I.e. the errors tend to cancel out.

• Ensemble of trees votes for final result

 Simple majority vote for category.

 Alternative (Friedman)

– Optimally reweight the trees via regularized regression (lasso).
38
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Random Forests – Injecting Randomness (1) 

• Bootstrap sampling process

 Select a training set by choosing N times with replacement from 

all N available training examples.

 On average, each tree is grown on only ~63% of the original 

training data.

 Remaining 37% “out-of-bag” (OOB) data used for validation.

– Provides ongoing assessment of model performance in the current tree.

– Allows fitting to small data sets without explicitly holding back any data 

for testing.

– Error estimate is unbiased and behaves as if we had an independent 

test sample of the same size as the training sample.

39
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Random Forests – Injecting Randomness (2)

• Random attribute selection

 For each node, randomly choose subset of K attributes on which the 

split is based (typically                   ).

 Faster training procedure

– Need to test only few attributes.

 Minimizes inter-tree dependence

– Reduce correlation between different trees.

• Each tree is grown to maximal size and is left unpruned

 Trees are deliberately overfit

 Become some form of nearest-neighbor predictor.

40
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Bet You’re Asking…

How can this possibly ever work???

41
B. Leibe
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A Graphical Interpretation

42
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.
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A Graphical Interpretation

43
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.
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A Graphical Interpretation

44
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining 

them, we obtain

a finer subdivision

of the feature 

space…
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A Graphical Interpretation

45
B. LeibeSlide credit: Vincent Lepetit

Different trees

induce different

partitions on the

data.

By combining 

them, we obtain

a finer subdivision

of the feature 

space…

…which at the

same time also

better reflects the

uncertainty due to

the bootstrapped

sampling. 
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Summary: Random Forests

• Properties

 Very simple algorithm.

 Resistant to overfitting – generalizes well to new data.

 Faster training

 Extensions available for clustering, distance learning, etc.

• Limitations

 Memory consumption

– Decision tree construction uses much more memory.

 Well-suited for problems with little training data

– Little performance gain when training data is really large.

46
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You Can Try It At Home…

• Free implementations available

 Original RF implementation by Breiman & Cutler

– http://www.stat.berkeley.edu/users/breiman/RandomForests/

– Papers, documentation, and code…

– …in Fortran 77.

 But also newer version available in Fortran 90!

– http://www.irb.hr/en/research/projects/it/2004/2004-111/

 Fast Random Forest implementation for Java (Weka)

– http://code.google.com/p/fast-random-forest/

47
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L. Breiman, Random Forests, Machine Learning, Vol. 45(1), pp. 5-32, 2001.

http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.irb.hr/en/research/projects/it/2004/2004-111/
http://code.google.com/p/fast-random-forest/
http://www.stat.berkeley.edu/users/breiman/RandomForests/
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References and Further Reading
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