Machine Learning – Lecture 11

Random Forests

23.11.2017

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Classification Approaches
 ➢ Linear Discriminants
 ➢ Support Vector Machines
 ➢ Ensemble Methods & Boosting
 ➢ Random Forests

• Deep Learning
 ➢ Foundations
 ➢ Convolutional Neural Networks
 ➢ Recurrent Neural Networks

• Main idea
 ➢ Instead of resampling, reweight misclassified training examples.
 – Increase the chance of being selected in a sampled training set.
 – Or increase the misclassification cost when training on the full set.
 [Freund & Schapire, 1996]

• Components
 ➢ $h_m(x)$: “weak” or base classifier
 – Condition: <50% training error over any distribution
 ➢ $H(x)$: “strong” or final classifier

• AdaBoost:
 ➢ Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)$$
Recap: AdaBoost – Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function

 $$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)$$

 b) Estimate the weighted error of this classifier on X:

 $$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

 c) Calculate a weighting coefficient for $h_m(x)$:

 $$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

 d) Update the weighting coefficients:

 $$w_n^{(m+1)} = w_n^{(m)} \exp \{ \alpha_m I(h_m(x_n) \neq t_n) \}$$
Recap: AdaBoost – Error Functions

- "Cross-entropy error" used in Logistic Regression
 - Similar to exponential error for $z > 0$.
 - Only grows linearly with large negative values of z.

$E = - \sum t_n \ln y_n + (1 - t_n) \ln(1 - y_n)$

$z_n = t_n y(x_n)$
Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis
Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis
Decision Trees

• Very old technique
 - Origin in the 60s, might seem outdated.

• But…
 - Can be used for problems with nominal data
 - E.g. attributes color ∈ \{red, green, blue\} or weather ∈ \{sunny, rainy\}.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them…
Decision Trees

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”
Decision Trees

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

Decision Trees

• **Assumption**
 - Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

• **Interpretability**
 - Information in a tree can then be rendered as logical expressions.
 - In our example:

 $$(\text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal})$$

 $$\lor (\text{Outlook} = \text{Overcast})$$

 $$\lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})$$
Training Decision Trees

• Finding the optimal decision tree is NP-hard…

• Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

• CART framework
 - Classification And Regression Trees (Breiman et al. 1993)
 - Formalization of the different design choices.
CART Framework

• Six general questions

 1. Binary or multi-valued problem?
 – I.e. how many splits should there be at each node?

 2. Which property should be tested at a node?
 – I.e. how to select the query attribute?

 3. When should a node be declared a leaf?
 – I.e. when to stop growing the tree?

 4. How can a grown tree be simplified or pruned?
 – Goal: reduce overfitting.

 5. How to deal with impure nodes?
 – I.e. when the data itself is ambiguous.

 6. How should missing attributes be handled?
CART – 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

⇒ Only consider binary trees here…
CART – 2. Picking a Good Splitting Feature

• Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

• Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(s_j \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(i(s_j) \).
 - Several possible definitions explored.
CART – Impurity Measures

- Misclassification impurity
 \[i(s_j) = 1 - \max_k p(C_k | s_j) \]

“Fraction of the training patterns in category \(C_k \) that end up in node \(s_j \).”

Problem: discontinuous derivative!
CART – Impurity Measures

- Entropy impurity

\[
i(s_j) = - \sum_k p(C_k | s_j) \log_2 p(C_k | s_j)
\]

“Reduction in entropy = gain in information.”

CART – Impurity Measures

- Gini impurity (variance impurity)

\[i(s_j) = \sum_{k \neq l} p(C_k | s_j) p(C_l | s_j) \]

\[= \frac{1}{2} \left[1 - \sum_k p^2(C_k | s_j) \right] \]

"Expected error rate at node \(s_j \) if the category label is selected randomly."

CART – Impurity Measures

• Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.
CART – 2. Picking a Good Splitting Feature

• Application
 ➢ Select the query that decreases impurity the most
 \[\Delta i(s_j) = i(s_j) - P_L i(s_{j,L}) - (1 - P_L) i(s_{j,R}) \]

• Multiway generalization (gain ratio impurity):
 ➢ Maximize
 \[\Delta i(s_j) = \frac{1}{Z} \left(i(s_j) - \sum_{m=1}^{M} P_m i(s_{j,m}) \right) \]
 ➢ where the normalization factor ensures that large \(K \) are not inherently favored:
 \[Z = - \sum_{m=1}^{M} P_m \log_2 P_m \]

\(P_L = \) fraction of points at left child node \(s_{j,L} \)
CART – Picking a Good Splitting Feature

• For efficiency, splits are often based on a single feature
 ➢ “Monothetic decision trees”

• Evaluating candidate splits
 ➢ Nominal attributes: exhaustive search over all possibilities.
 ➢ Real-valued attributes: only need to consider changes in label.
 – Order all data points based on attribute x_i.
 – Only need to test candidate splits where $\text{label}(x_i) \neq \text{label}(x_{i+1})$.
CART – 3. When to Stop Splitting

• Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

• Typical behavior

![Graph showing accuracy vs. hypothesis complexity for both training and test data](image-url)
CART – Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - **Prepruning**: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - **Postpruning**: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \arg \max_k p(C_k | N) \]
Decision Trees – Computational Complexity

• Given
 ➢ Data points \{x_1,\ldots,x_N\}
 ➢ Dimensionality \(D\)

• Complexity
 ➢ Storage: \(O(N)\)
 ➢ Test runtime: \(O(\log N)\)
 ➢ Training runtime: \(O(DN^2 \log N)\)
 – Most expensive part.
 – Critical step: selecting the optimal splitting point.
 – Need to check \(D\) dimensions, for each need to sort \(N\) data points.
 \(O(DN \log N)\)
Summary: Decision Trees

• Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 ⇒ Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.
Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 - Randomized attribute selection

• Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).

- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):
 \[
 \triangle E = \sum_{k=1}^{K} \frac{|S_k|}{|S|} \sum_{j=1}^{N} p_j \log_2(p_j)
 \]
Randomized Decision Trees

• Randomized splitting
 - Faster training: \(O(KN^2 \log N) \) \(K \ll D \)
 - Use very simple binary feature tests.
 - Typical choice
 - \(K = 10 \) for root node.
 - \(K = 100d \) for node at level \(d \).

• Effect of random split
 - Of course, the tree is no longer as powerful as a single classifier…
 - But we can compensate by building several trees.
Ensemble Combination

- Ensemble combination
 - Tree leaves \((l, \eta)\) store posterior probabilities of the target classes.

 \[p_{l, \eta}(C|x) \]

 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)

 \[p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_{l, \eta}(C|x) \]

B. Leibe
Applications: Character Recognition

• Computer Vision: Optical character recognition
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.

• Simple binary features
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

Applications: Character Recognition

- **Image patches ("Tags")**
 - Randomly sampled 4×4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag

- **Representation of digits ("Queries")**
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere

 - *How do we know which spatial arrangements to look for?*
Applications: Character Recognition

• Answer: Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse…

• Classification
 - Average estimated posterior distributions stored in the leaves.
Applications: Fast Keypoint Detection

• Computer Vision: fast keypoint detection
 ➢ Detect keypoints: small patches in the image used for matching
 ➢ Classify into one of ~200 categories (visual words)

• Extremely simple features
 ➢ E.g. pixel value in a color channel (CIELab)
 ➢ E.g. sum of two points in the patch
 ➢ E.g. difference of two points in the patch
 ➢ E.g. absolute difference of two points

• Create forest of randomized decision trees
 ➢ Each leaf node contains probability distribution over 200 classes
 ➢ Can be updated and re-normalized incrementally.
Application: Fast Keypoint Detection

Topics of This Lecture

• Decision Trees

• Randomized Decision Trees
 ➢ Randomized attribute selection

• Random Forests
 ➢ Bootstrap sampling
 ➢ Ensemble of randomized trees
 ➢ Posterior sum combination
 ➢ Analysis
Random Forests (Breiman 2001)

• General ensemble method
 - Idea: Create ensemble of many (very simple) trees.

• Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

• Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

• Main secret
 - Injecting the “right kind of randomness”.

B. Leibe
Random Forests – Algorithmic Goals

- Create many trees (50 – 1,000)

- Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.

- Ensemble of trees votes for final result
 - Simple majority vote for category.

 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).
Random Forests – Injecting Randomness (1)

• Bootstrap sampling process
 - Select a training set by choosing N times with replacement from all N available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.
Random Forests – Injecting Randomness (2)

• Random attribute selection
 - For each node, randomly choose subset of K attributes on which the split is based (typically $K = \sqrt{N_f}$).
 => Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.

• Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 => Become some form of nearest-neighbor predictor.
Bet You’re Asking…

How can this possibly *ever* work???
A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Slide credit: Vincent Lepetit
Summary: Random Forests

• Properties
 - Very simple algorithm.
 - Resistant to overfitting – generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

• Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.
You Can Try It At Home…

• Free implementations available
 - Original RF implementation by Breiman & Cutler
 - Papers, documentation, and code…
 - …in Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)

References and Further Reading

• More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

• The original papers for Randomized Trees

• The original paper for Random Forests:
References and Further Reading

• The original papers for Randomized Trees

• The original paper for Random Forests: