
- **Main idea** [Freund & Schapire, 1996]
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- **Components**
 - $h_m(x)$: “weak” or base classifier
 - $H(x)$: “strong” or final classifier

- **AdaBoost**:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 $$H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)$$

Recap: AdaBoost – Algorithm

1. **Initialization**: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1,...,N$.
2. For $m = 1,...,M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 $$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq y_n)$$
 $$f(A) = \begin{cases} 1 & \text{if } A \text{ is true} \\ 0 & \text{else} \end{cases}$$
 b) Estimate the weighted error of this classifier on X:
 $$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq y_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$
 c) Calculate a weighting coefficient for $h_m(x)$:
 $$\alpha_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$
 d) Update the weighting coefficients:
 $$w_n^{(m+1)} = w_n^{(m)} \exp \left(\alpha_m I(h_m(x_n) \neq y_n) \right)$$

Recap: AdaBoost – Error Functions

- Ideal misclassification error
- Squared error
- Hinge error
- Exponential error
- Cross-entropy error

- “Cross-entropy error” used in Logistic Regression
 - Similar to exponential error for $z > 0$.
 - Only grows linearly with large negative values of z.
 - Make AdaBoost more robust by switching to this error function.
 → “GentleBoost”
Topics of This Lecture

• Decision Trees
• Randomized Decision Trees
 • Randomized attribute selection
• Random Forests
 • Bootstrap sampling
 • Ensemble of randomized trees
 • Posterior sum combination
 • Analysis

Decision Trees

• Very old technique
 • Origin in the 60s, might seem outdated.
• But...
 • Can be used for problems with nominal data
 • E.g. attributes color ∈ {red, green, blue} or weather ∈ {sunny, rainy}.
 • Discrete values, no notion of similarity or even ordering.
 • Interpretable results
 • Learned trees can be written as sets of if-then rules.
 • Methods developed for handling missing feature values.
 • Successfully applied to broad range of tasks
 • E.g. Medical diagnosis
 • E.g. Credit risk assessment of loan applicants
 • Some interesting novel developments building on top of them...

Decision Trees

• Example:
 • “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

Decision Trees

• Elements
 • Each node specifies a test for some attribute.
 • Each branch corresponds to a possible value of the attribute.

Training Decision Trees

• Finding the optimal decision tree is NP-hard...
• Common procedure: Greedy top-down growing
 • Start at the root node.
 • Progressively split the training data into smaller and smaller subsets.
 • In each step, pick the best attribute to split the data.
 • If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 • Else, recursively apply the procedure to the subsets.
• CART framework
 • Classification And Regression Trees (Breiman et al. 1993)
 • Formalization of the different design choices.
CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - i.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - i.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - i.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - i.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

CART – 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

\[\Rightarrow \text{Only consider binary trees here...} \]

CART – 2. Picking a Good Splitting Feature

- Goal
 > Want a tree that is as simple/small as possible (Occam's razor).
 > But: Finding a minimal tree is an NP-hard optimization problem.

- Greedy top-down search
 > Efficient, but not guaranteed to find the smallest tree.
 > Seek a property \(T \) at each node \(s_j \) that makes the data in the child nodes as pure as possible.
 > For formal reasons more convenient to define impurity \(i(s_j) \).
 > Several possible definitions explored.

CART – Impurity Measures

- Misclassification impurity

\[i(s_j) = 1 - \max_k P(C_k | s_j) \]

“Fraction of the training patterns in category \(C_k \) that end up in node \(s_j \)”

- Entropy impurity

\[i(s_j) = - \sum_k P(C_k | s_j) \log_2 P(C_k | s_j) \]

“Reduction in entropy = gain in information.”

- Gini impurity (variance impurity)

\[i(s_j) = \frac{1}{2} \left[1 - \sum_k P(C_k | s_j)^2 \right] \]

“Expected error rate at node \(s_j \), if the category label is selected randomly.”
CART – Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.

CART – 2. Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most

$$\Delta(t_j) = i(s_j) - P_L(s_j) - (1 - P_R(s_j))$$

- Multiway generalization (gain ratio impurity):
 - Maximize
 $$\Delta(t_j) = \frac{1}{Z} \left(i(s_j) - \sum_{m=1}^{M} P_m(s_{jm}) \right)$$
 - where the normalization factor ensures that large K are not inherently favored:
 $$Z = - \sum_{m=1}^{M} P_m \log_2 P_m$$

CART – Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - "Monothetic decision trees"

- Evaluating candidate splits
 - Nominal attributes: exhaustive search over all possibilities.
 - Real-valued attributes: only need to consider changes in label.
 - Order all data points based on attribute x_i.
 - Only need to test candidate splits where label(x_i) ≠ label(x_{i+1}).

CART – 3. When to Stop Splitting

- Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

- Typical behavior

Decision Trees – Computational Complexity

- Given
 - Data points $\{x_1, \ldots, x_N\}$
 - Dimensionality D

- Complexity
 - Storage: $O(N)$
 - Test runtime: $O(\log N)$
 - Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check D dimensions, for each need to sort N data points.
 $$O(DN \log N)$$
Summary: Decision Trees

Properties
- Simple learning procedure, fast evaluation.
- Can be applied to metric, nominal, or mixed data.
- Often yield interpretable results.

Limitations
- Often produce noisy (bushy) or weak (stunted) classifiers.
- Do not generalize too well.
- Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
- Stability:
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
- Result of discrete and greedy learning procedure.
- Expensive learning step
 - Mostly due to costly selection of optimal split.

Randomized Decision Trees (Amit & Geman 1997)
- Decision trees: main effort on finding good split
 - Training runtime: \(O(DN^2 \log N) \)
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large \(D \)).
- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of \(K \) attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (\(\Delta E \): reducing entropy):
 \[
 \Delta E = \sum_{k=1}^{K} S_k \sum_{j=1}^{N} p_j \log_2(p_j)
 \]

Ensemble Combination
- Ensemble combination
 - Tree leaves \((l,T)\) store posterior probabilities of the target classes.
 - \(p(T|C) \)
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[
 p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p(C|l|x)
 \]
Applications: Character Recognition

- **Computer Vision: Optical character recognition**
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.

- **Simple binary features**
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

- **Image patches (“Tags”)**
 - Randomly sampled 4x4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag

- **Representation of digits (“Queries”)**
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?

- **Answer:** Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse...

- **Classification**
 - Average estimated posterior distributions stored in the leaves.

Application: Fast Keypoint Detection

- **Computer Vision: fast keypoint detection**
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- **Extremely simple features**
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- **Create forest of randomized decision trees**
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.

Topics of This Lecture

- **Decision Trees**
- **Randomized Decision Trees**
 - Randomized attribute selection
- **Random Forests**
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.
- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!
- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).
- Main secret
 - Injecting the “right kind of randomness”.

Random Forests – Algorithmic Goals

- Create many trees (50 – 1,000)
- Inject randomness into trees such that
 - Each tree has maximal strength
 - i.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - i.e. the errors tend to cancel out.
- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimal reweight the trees via regularized regression (lasso).

Random Forests – Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

Random Forests – Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(K \) attributes on which the split is based (typically \(K = \sqrt{N} \)).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
 - Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Bet You’re Asking…

How can this possibly ever work???
Different trees induce different partitions on the data. By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

Summary: Random Forests

- **Properties**
 - Very simple algorithm.
 - Resistant to overfitting — generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- **Limitations**
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

The original paper for Randomized Trees

The original paper for Random Forests:

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - Papers, documentation, and code...
 - ...in Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)

References and Further Reading

• The original papers for Randomized Trees

• The original paper for Random Forests: