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Linear Support Vector Machines
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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RWTH
Recap: Generalized Linear Models

* Generalized linear model
y(x) = g(Ww' x4 wp)

> ¢( - ) is called an activation function and may be nonlinear.

> The decision surfaces correspond to

T

y(x) = const. < W X+ wy = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

* Advantages of the non-linearity

> Can be used to bound the influence of outliers
and “too correct” data points.

» When using a sigmoid for g(-), we can interpret L [ ?
the y(x) as posterior probabilities. gla) =
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RWTH
Recap: Extension to Nonlinear Basis Fcts.

* Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

Zwk] ¢;(x) + wio

* Advantages
> Transformation allows non-linear decision boundaries.

> By choosing the right cbj, every continuous function can (in principle)
be approximated with arbitrary accuracy.

* Disadvantage

> The error function can in general no longer be minimized in closed
form.

— Minimization with Gradient Descent
B. Leibe
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Recap: Basis Functions

* Generally, we consider models of the following form

- where ¢,(x) are known as basis functions.
- In the simplest case, we use linear basis functions: ¢,(x) = z,.

* Other popular basis functions

I : | 1

07514\ / 0.75 |

05} 0.5

0251/ 025t/ |
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Polynomial Gaussian
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RWNTH
Recap: Iterative Methods for Estimation

* Gradient Descent (15t order)
wi ) = wl) —p VE(w)|

> Simple and general
> Relatively slow to converge, has problems with some functions

W(T)

* Newton-Raphson (2"d order)
wi ) = wl) — H 'VE(w)|

W(T)

where H = VVE(w) is the Hessian matrix, i.e. the matrix
of second derivatives.

> Local guadratic approximation to the target function

> Faster convergence
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Recap: Gradient Descent

* [terative minimization
> Start with an initial guess for the parameter values w,(;;.).
> Move towards a (local) minimum by following the gradient.

* Basic strategies
> "Batch learning”

(r+1) _ (r)  OE(w)

W(T)

oD _ o (1) OB (W)

=
3
=
= > “Sequential updating” =W, — |
kj ki 7
g 7 / OWkj | (r)
§ N
é where E(w) = Z E,(w)
g =
=

B. Leibe



Recap: Gradient Descent

* Example: Quadratic error function
N

E(w) =) (y(xn; W) — tn)°

n=1

* Sequential updating leads to delta rule (=LMS rule)

o = ) =1 (e (s W) = tin) 65(x0)
~
5 = Wy} = N0k (%n)
g > Where
§ Okn = Yk (Xn§ W) — lkn
% = Simply feed back the input data point, weighted by the
cE% classification error.

Slide adapted from Bernt Schiele B. Leibe



Recap: Gradient Descent

* (Cases with differentiable, non-linear activation function

yk(x) = glax) =g Z’wkiqu (%n)

* Gradient descent (again with quadratic error function)

> OE,(w)  dg(ax) |

% w]g;Jrl) _ w}(ﬂ;) . 775kn¢j (Xn)

: dg(ay)

[ 0 n — Xn; W) — tin
g = 2 (o) = )

Slide adapted from Bernt Schiele B. Leibe



RWNTH
Recap: Probabillistic Discriminative Models

* Consider models of the form
p(Cilep) = y(p) =o(w' ¢)
with p(Calep) = 1—p(Ci|@)

* This model is called logistic regression.

* Properties
> Probabillistic interpretation
> But discriminative method: only focus on decision hyperplane

> Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C,) and p(C,).
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Recap: Logistic Regression

* Let’'s consider a dataset{¢, .t } withn=1,...,N,
where ¢,, = ¢(x,,)and t,, € {0,1}, t = (¢1,...,tn)"

* Withy, = p(Cl|qb ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

* Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= — Z {tnIny, + (1 —%,)In(1 —y,)}

> This is the so-called cross-entropy error function.
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RWNTH
Recap: Iteratively Reweighted Least Squares

* Update equations

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 7 (y — t)}
= (®'R®) @' Rz
with z = ®dw'™ —R71(y —t)

* Very similar form to pseudo-inverse (normal equations)
-~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.
= lteratively Reweighted Least-Squares (IRLS)

12
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Topics of This Lecture

* Softmax Regression
> Multi-class generalization
> Gradient descent solution

* Note on Error Functions
> ldeal error function
> Quadratic error
> Cross-entropy error

* Linear Support Vector Machines
> Lagrangian (primal) formulation
> Dual formulation
> Discussion

B. Leibe

13



N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Softmax Regression

* Multi-class generalization

of logistic regression

-~ In logistic regression, we assumed binary labels ¢,, € {0,1}.

> Softmax generalizes this to

_ng = 1}){; wg_
Py =2|x;w
yow) = | :

Py =Kx;w)_

K values in 1-of-K notation.

exp(wq X) |
B 1 exp(wj X)
K .
D et exp(ijx) :
| exp(W ) |

> This uses the softmax function

exp(ag)

Zj exp(a;)

> Note: the resulting distribution is normalized.

B. Leibe
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RWNTH
Softmax Regression Cost Function

* Logistic regression

> Alternative way of writing the cost function with indicator function I(-)
N

E(w) = — Z {toIny, + (1 —t,) In(1 —y,)}

— —ZZ k)In P (y,, = k|x,; W)}

* Softmax regression
> Generalization to K classes using indicator functions.

= -y {]I(tn:k)ln ;Xp(wk ) }

n=1 k=1 Z] leXp(W;r )
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Optimization

* Again, no closed-form solution is available
> Resort again to Gradient Descent

> Gradient
N
Ve, E(W) = = [[(tp = k) In P (y, = k|xp; w)]
n=1
* Note

- V. E(w) is itself a vector of partial derivatives for the different
components of w,.

> We can now plug this into a standard optimization package.

B. Leibe
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Topics of This Lecture

* Note on Error Functions
> |deal error function
> Quadratic error
> Cross-entropy error
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RWTH
Note on Error Functions

t, € {_]_’ 1} E(Zn) Ideal misclassification error

Not differentiable!

v

) — o’ 1 7" #n = tny(Xn)

* Ideal misclassification error function (black)
> This is what we want to approximate (error = #misclassifications)
> Unfortunately, it is not differentiable.
> The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 19

Image source: Bishop, 2006
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Note on Error Functions

tn, € {—1,1}

Sensitive to outliers!

Ideal misclassification error
Squared error

Penalizes “too correct”
data points!

N e

-2

-1

0

— L 2 =ty

* Squared error used In Least-Squares Classification

> Very popular, leads to closed-form solutions.

> However, sensitive to outliers due to squared penalty.

> Penalizes “too correct” data points

— Generally does not lead to good classifiers. 20

Image source: Bishop, 2006



Comparing Error Functions (Loss Functions)
A
E(Z'”’) Ideal misclassification error
Squared error
Cross-entropy error

tn, € {—1,1}

Robust to outliers!

—2 — e = tay(xn)

* Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, unique minimum exists.
> Robust to outliers, error increases only roughly linearly
> But no closed-form solution, requires iterative estimation. 21

Image source: Bishop, 2006
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Overview: Error Functions

“E (2)

* |deal Misclassification Error
> This is what we would like to optimize.
> But cannot compute gradients here.

* Quadratic Error
-2
> [Easy to optimize, closed-form solutions exist.
> But not robust to outliers.

y 0 1 2

* Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, uniqgue minimum exists.
> But no closed-form solution, requires iterative estimation.

= Analysis tool to compare classification approaches
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Topics of This Lecture

* Linear Support Vector Machines
> Lagrangian (primal) formulation
> Dual formulation
> Discussion

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

. 23
B. Leibe



Generalization and Overfitting

A

test error

training error

_I ——————————————

* Goal: predict class labels of new observations
> Train classification model on limited training set.

> The further we optimize the model parameters, the more the
training error will decrease.

> However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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Image source: B. Schiele
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Example: Linearly Separable Data

* Qverfitting is often a problem with
linearly separable data

> Which of the many possible decision
boundaries is correct?

> All of them have zero error on the
training set...

> However, they will most likely result in different
predictions on novel test data.
= Different generalization performance

* How to select the classifier with the best generalization
performance?

B. Leibe
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Revisiting Our Previous Example...

* How to select the classifier with
the best generalization performance?

> Intuitively, we would like to select
the classifier which leaves maximal
“safety room” for future data points.

> This can be obtained by maximizing the
margin between positive and negative
data points.

> It can be shown that the larger the margin, the lower the
corresponding classifier's VC dimension (capacity for overfitting).

* The SVM takes up this idea

> It searches for the classifier with maximum margin.

> Formulation as a convex optimization problem
= Possible to find the globally optimal solution!

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

27

B. Leibe



Support Vector Machine (SVM)

* Let's first consider linearly separable data
N
> NN training data points {(Xz',yz')}z-:l X; € R?

. Target values t; € {—1,1}

> Hyperplane separating the data
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Slide credit: Bernt Schiele B. Leibe



Support Vector Machine (SVM)

* Margin of the hyperplane: d_ +d

> d,: distance to nearest pos.
training example

> d_: distance to nearestneg. ™.
training example ‘

5

°
S
o R °
(e
= @\
(@) .
£ Origin \ ‘
5 © ® /
9 . _
© o) Margin
= ]
e
g - We can always choose w, bsuchthat d_ =d, = ——
g W] )
B. Leibe

Slide adapted from Bernt Schiele Image source: C. Burges, 1998



Support Vector Machine (SVM)

* Since the data is linearly separable, there exists a
hyperplane with

wix, +b>+1 for t,=-+1

wix,+b- —1 for t,=—1

* Combined in one equation, this can be written as
to(wix, +b)>1 Vn

— Canonical representation of the decision hyperplane.
> The equation will hold exactly for the points

on the margin
th(Wx, +b) =1

> By definition, there will always be at least
one such point.
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wix, +b=
T

minimizing ||w]|°
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Slide credit: Bernt Schiele

Support Vector Machine (SVM)

* We can choose w such that

1

1 for one ¢,

w X, +b=—-1 forone ¢,=-1

* The distance between those two hyperplanes is then the

margin 1
d_ — d_|_ —
Iw]
2
d_ + d_|_ —
w]

= We can find the hyperplane with maximal margin by

B. Leibe
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Support Vector Machine (SVM)

* Optimization problem

> Find the hyperplane satisfying
1

arg min —||w||
w,b

under the constraints

tn(Wix, +b) >1 Vn

> Quadratic programming problem with linear constraints.
> Can be formulated using Lagrange multipliers.

* Who is already familiar with Lagrange multipliers?
> Let's look at a real-life example...

B. Leibe
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Recap: Lagrange Multipliers

* Problem
> We want to maximize K(x) subject to constraints f(x) = 0.

> Example: we want to get as close as
possible, but there is a fence.

> How should we move?

> We want to maximize VK

> But we can only move parallel
to the fence, i.e. along

VHK = VK +A\Vf
with A = 0.
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Slide adapted from Mario Fritz B. Leibe



Recap: Lagrange Multipliers

* Problem
> We want to maximize K(x) subject to constraints f(x) = 0.

> Example: we want to get as close as
possible, but there is a fence.

> How should we move?

i = Optimize

= ma)\XL(X, A = K(x)+ Af
- ) .

3 — =V K =0

zcl’ Ox |

5 oL

- = f(z) =0

- -
a>\ B. Leibe
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Recap: Lagrange Multipliers

* Problem

e Two cases /&

>

Now let’s look at constraints of the form f(x) > 0.

Example: There might be a hill from
which we can see better...

Optimize max L(x,\) = K(x) + \f(x)

Solution lies on boundary
= f(x) = 0 for some A >0

Solution lies inside f(x) >0
= Constraint inactive: A = 0

In both cases

= Af(x) =0 h Fence f 35

B. Leibe



Recap: Lagrange Multipliers

* Problem
» Now let’s look at constraints of the form f(x) > O.

> Example: There might be a hill from
which we can see better...

- Optimize max L(x,\) = K(x) + Af(x)

X, A\
(%) = 0_ S~ Karush-Kuhn-Tucker (KKT)
conditions: A > 0
e Two cases f(x) >0
> Solution lies on boundary Af(x) = 0

= f(x) = 0 for some A >0
» Solution lies inside f(x) >0
— Constraint inactive;: A= 0

> In both cases
= Af(x)=0

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Fence f 35

B. Leibe



RWNTH
SVM - Lagrangian Formulation

* Find hyperplane minimizing ||vv||2 under the constraints
th(Wix, +b)—1>0 Vn

* Lagrangian formulation
> Introduce positive Lagrange multipliers: anp >0 Vn

> Minimize Lagrangian (“primal form”)
N
1
L(W, b, a) — 5 ||WH2 - 7;:1: A {tn(WTXn T b) _ 1}

> l.e., find w, b, and a such that

N N
oL Z OL Z
n=1 n=1
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SVM - Lagrangian Formulation

* Lagrangian primal form

N
1
L, = 5 I = Zan {t,(W'x, +b) — 1}
n=1

N
1
— 5 ||W||2 - Z 079 {tny(xn) — 1}
n=1

* The solution of Lp needs to fulfill the KKT conditions

> Necessary and sufficient conditions

g KKT:

§ tay(xn) =1 > 0 fx) > 0
% 7% {tny(xn) _1} = 0 Af(x) =0
=

B. Leibe



SVM - Solution (Part 1)

e Solution for the hyperplane
> Computed as a linear combination of the training examples

N
W = E antnXy,
n=1

> Because of the KKT conditions, the following must also hold

a., (tn(WTXn +b) — 1) =0

KKT:

M(x) =

0

- This implies that a,, > 0 only for training data points for which

= Only some of the data points actually influence the decision
boundary!
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Slide adapted from Bernt Schiele B. Leibe
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SVM — Support Vectors

* The training points for which a, > 0 are called
“support vectors”.

* Graphical interpretation:

> The support vectors are the
points on the margin.

> They define the margin

~ and thus the hyperplane. o) W

o °

g — Robustness to “too correct’

o points! °

£ \ @

— Origin * )

2 ° Q, /

:_—% o Margin
=

40
Image source: C. Burges, 1998

B. Leibe

Slide adapted from Bernt Schiele
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SVM - Solution (Part 2)

e Solution for the hyperplane
» To define the decision boundary, we still need to know b.
~ Observation: any support vector x, satisfies

KKT:
tny(xn) =1n Z amth%Xn +b) =1 f(x) >0
meS
» Using t,,% = 1 we can derive: b=t, — Z amtmxgzxn

meS
> In practice, it is more robust to average over all support vectors:

— Nis Z by — Z amtmxﬁxn

nes meS

B. Leibe
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SVM - Discussion (Part 1)

* Linear SVM

> Linear classifier

> SVMs have a “guaranteed” generalization capability.
> Formulation as convex optimization problem.

= Globally optimal solution!

* Primal form formulation
- Solution to quadratic prog. problem in M variables is in O(M?3).
- Here: D variables = O(D?3)
> Problem: scaling with high-dim. data (“curse of dimensionality”)

Slide adapted from Bernt Schiele B. Leibe
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SVM — Dual Formulation

* Improving the scaling behavior: rewrite L in a dual form

> Using the constraint Z antn, = 0 we obtain (9—bp — ()
n=1

| N N
L, = 5 [wl|? — Z antn WX, + Z anp,
n=1 n=1
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SVM — Dual Formulation

| N N
L, = 5 [w]|* — Z antnW X, + Z anp,
n=1 n=1

N —
. | | oL,
> Using the constraint w = E antn,Xy, We obtain 8— — ()
W
n=1

| N N N
L, = 5 [wl|* — Zantn Z amtmx,,Tnxn + Z ar,
= _ ||w||2 S‘ Sj Unmtntm (XEX,) + Zan

n=1m=1
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SVM — Dual Formulation

L——HWH2 YYanamtt (x}x, —I—Zan

n=1m=1

N
1 1
- Applying 5 [wl|*= §WTW and again using w :Z antnXnp

n=1

| NN
2—WTW =3 y: S: UnGmtntm (X X,)

n=1m=1

> Inserting this, we get the Wolfe dual

N 1 N N
= Z Up — § Z Z anamtntm(xgv,xn)
n=1

n=1m=1

Slide adapted from Bernt Schiele B. Leibe
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SVM — Dual Formulation

* Maximize

N 1 N N
Ly(a) =) an— . > anamtntm(x,Xn)
n—=1

n=1m=1

under the conditions

IV
-

Vn

Qn

N
E a'ntn
n=1

~ The hyperplane is given by the N support vectors:

Ns
W = E AntnXn
n=1

B. Leibe
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Slide adapted from Bernt Schiele
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SVM - Discussion (Part 2)

e Dual form formulation

> In going to the dual, we now have a problem in /N variables (a,).

> Isn’t this worse??? We penalize large training sets!

* However...
1. SVMs have sparse solutions: a,, # 0 only for support vectors!

= This makes it possible to construct efficient algorithms
— e.g. Sequential Minimal Optimization (SMO)
— Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

— We’ll see that in the next lecture...

B. Leibe
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References and Further Reading

* More information on SVMs can be found in Chapter 7.1 of

= PATTERN RECOGNITION
AN

Bishop’s book.

Christopher M. Bishop E
Pattern Recognition and Machine Learning

Springer, 2006

* Additional information about Statistical Learning Theory and
a more in-depth introduction to SVMs are available in the
following tutorial:

> C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.
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http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf

