Machine Learning – Lecture 2
Probability Density Estimation
16.10.2017

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Announcements

• Exceptional number of lecture participants this year
 ➢ Current count: 449 participants
 ➢ This is very nice, but it stretches our resources to their limits

• Monday lecture slot
 ➢ Shifted to 8:30 – 10:00 in AH IV (276 seats)
 ➢ We will monitor the situation and take further action if the space is not sufficient

• Thursday lecture slot
 ➢ Will stay at 14:15 – 15:45 in H02 (C.A.R.L, 786 seats)

• Exercises (non-mandatory)
 ➢ We will try to offer corrections, but we will have to see how to handle those numbers…
Announcements

• L2P electronic repository
 ➢ Slides, exercises, and supplementary material will be made available here
 ➢ Lecture recordings will be uploaded 2-3 days after the lecture

• Course webpage
 ➢ http://www.vision.rwth-aachen.de/courses/
 ➢ Slides will also be made available on the webpage

• Please subscribe to the lecture on the Campus system!
 ➢ Important to get email announcements and L2P access!
Course Outline

• Fundamentals
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Classification Approaches
 ➢ Linear Discriminants
 ➢ Support Vector Machines
 ➢ Ensemble Methods & Boosting
 ➢ Randomized Trees, Forests & Ferns

• Deep Learning
 ➢ Foundations
 ➢ Convolutional Neural Networks
 ➢ Recurrent Neural Networks
Topics of This Lecture

• Bayes Decision Theory
 - Basic concepts
 - Minimizing the misclassification rate
 - Minimizing the expected loss
 - Discriminant functions

• Probability Density Estimation
 - General concepts
 - Gaussian distribution

• Parametric Methods
 - Maximum Likelihood approach
 - Bayesian vs. Frequentist views on probability
Bayes Decision Theory

“The theory of inverse probability is founded upon an error, and must be wholly rejected.”

R.A. Fisher, 1925

Thomas Bayes, 1701-1761
Bayes Decision Theory

• Example: handwritten character recognition

• Goal:
 - Classify a new letter such that the probability of misclassification is minimized.
Bayes Decision Theory

- **Concept 1: Priors** (a priori probabilities)
 - What we can tell about the probability *before seeing the data*.
 - Example:

```
C_1 = a
p(C_1) = 0.75

C_2 = b
p(C_2) = 0.25
```

- In general:

\[
\sum_k p(C_k) = 1
\]
Bayes Decision Theory

- **Concept 2: Conditional probabilities**
 - Let x be a feature vector.
 - x measures/describes certain properties of the input.
 - E.g. number of black pixels, aspect ratio, ...
 - $p(x|C_k)$ describes its likelihood for class C_k.

Slide credit: Bernt Schiele
Bayes Decision Theory

- Example:

- Question:
 - Which class?
 - Since $p(x|b)$ is much smaller than $p(x|a)$, the decision should be ‘a’ here.
Bayes Decision Theory

- Example:
 - \(p(x|a) \) vs. \(p(x|b) \)
 - Question:
 - Which class?
 - Since \(p(x|a) \) is much smaller than \(p(x|b) \), the decision should be ‘b’ here.
Bayes Decision Theory

• Example:

\[p(x | a) \]

\[p(x | b) \]

• Question:
 - Which class?
 - Remember that \(p(a) = 0.75 \) and \(p(b) = 0.25 \)…
 - I.e., the decision should be again ‘a’.
 - \(\Rightarrow \) How can we formalize this?
Bayes Decision Theory

• Concept 3: Posterior probabilities

 We are typically interested in the \textit{a posteriori} probability, i.e. the probability of class C_k given the measurement vector x.

• Bayes’ Theorem:

\[
p(C_k \mid x) = \frac{p(x \mid C_k) p(C_k)}{p(x)} = \frac{p(x \mid C_k) p(C_k)}{\sum_i p(x \mid C_i) p(C_i)}
\]

• Interpretation

\[
Posterior = \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}}
\]
Bayes Decision Theory

\[p(x|a) \]

\[p(x|b) \]

\[p(x|a)p(a) \]

\[p(x|b)p(b) \]

\[p(a|x) \]

\[p(b|x) \]

\[\text{Decision boundary} \]

\[\text{Likelihood} \]

\[\text{Likelihood} \times \text{Prior} \]

\[\text{Posterior} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Normalization Factor}} \]
Bayesian Decision Theory

- **Goal:** Minimize the probability of a misclassification

\[
p(\text{mistake}) = p(x \in \mathcal{R}_1, C_2) + p(x \in \mathcal{R}_2, C_1)
\]

\[
= \int_{\mathcal{R}_1} p(x, C_2) \, dx + \int_{\mathcal{R}_2} p(x, C_1) \, dx.
\]

\[
= \int_{\mathcal{R}_1} p(C_2|x)p(x) \, dx + \int_{\mathcal{R}_2} p(C_1|x)p(x) \, dx
\]

The green and blue regions stay constant.

Only the size of the red region varies!

Image source: C.M. Bishop, 2006
Bayes Decision Theory

• Optimal decision rule
 - Decide for C_1 if
 \[p(C_1|x) > p(C_2|x) \]
 - This is equivalent to
 \[p(x|C_1)p(C_1) > p(x|C_2)p(C_2) \]

 - Which is again equivalent to (Likelihood-Ratio test)
 \[\frac{p(x|C_1)}{p(x|C_2)} > \frac{p(C_2)}{p(C_1)} \]

 Decision threshold θ
Generalization to More Than 2 Classes

- Decide for class k whenever it has the greatest posterior probability of all classes:

$$p(C_k | x) > p(C_j | x) \quad \forall j \neq k$$

$$p(x | C_k) p(C_k) > p(x | C_j) p(C_j) \quad \forall j \neq k$$

- Likelihood-ratio test

$$\frac{p(x | C_k)}{p(x | C_j)} > \frac{p(C_j)}{p(C_k)} \quad \forall j \neq k$$

Slide credit: Bernt Schiele
Classifying with Loss Functions

- Generalization to decisions with a loss function
 - Differentiate between the possible decisions and the possible true classes.
 - Example: medical diagnosis
 - Decisions: sick or healthy (or: further examination necessary)
 - Classes: patient is sick or healthy
 - The cost may be asymmetric:
 \[
 \text{loss}(\text{decision} = \text{healthy} | \text{patient} = \text{sick}) >>> \text{loss}(\text{decision} = \text{sick} | \text{patient} = \text{healthy})
 \]
Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix L_{kj}

\[L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k. \]

- Example: cancer diagnosis

\[
L_{\text{cancer diagnosis}} = \begin{pmatrix}
\text{Truth} & \text{cancer} & \text{normal} \\
\text{cancer} & 0 & 1000 \\
\text{normal} & 1 & 0
\end{pmatrix}
\]
Classifying with Loss Functions

- Loss functions may be different for different actors.

 Example:

 \[L_{stock\text{trader}}(\text{subprime}) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix} \]

 \[L_{bank}(\text{subprime}) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix} \]

 ⇒ Different loss functions may lead to different Bayes optimal strategies.
Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.

- Solution: Minimize the expected loss

\[
\mathbb{E}[L] = \sum_k \sum_j \int_{\mathcal{R}_j} L_{k,j} p(x, C_k) \, dx
\]

- This can be done by choosing the regions \(\mathcal{R}_j \) such that

\[
\mathbb{E}[L] = \sum_k L_{k,j} p(C_k \mid x)
\]

which is easy to do once we know the posterior class probabilities \(p(C_k \mid x) \)
Minimizing the Expected Loss

- Example:
 - 2 Classes: \(C_1, C_2 \)
 - 2 Decision: \(\alpha_1, \alpha_2 \)
 - Loss function: \(L(\alpha_j|C_k) = L_{kj} \)

- Expected loss (= risk \(R \)) for the two decisions:
 \[
 \mathbb{E}_{\alpha_1}[L] = R(\alpha_1|x) = L_{11}p(C_1|x) + L_{21}p(C_2|x)
 \]
 \[
 \mathbb{E}_{\alpha_2}[L] = R(\alpha_2|x) = L_{12}p(C_1|x) + L_{22}p(C_2|x)
 \]

- Goal: Decide such that expected loss is minimized
 - I.e. decide \(\alpha_1 \) if \(R(\alpha_2|x) > R(\alpha_1|x) \)
Minimizing the Expected Loss

\[R(\alpha_2 | x) > R(\alpha_1 | x) \]
\[L_{12}p(C_1 | x) + L_{22}p(C_2 | x) > L_{11}p(C_1 | x) + L_{21}p(C_2 | x) \]
\[(L_{12} - L_{11})p(C_1 | x) > (L_{21} - L_{22})p(C_2 | x) \]
\[\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(C_2 | x)}{p(C_1 | x)} = \frac{p(x | C_2)p(C_2)}{p(x | C_1)p(C_1)} \]
\[\frac{p(x | C_1)}{p(x | C_2)} > \frac{(L_{21} - L_{22})p(C_2)}{(L_{12} - L_{11})p(C_1)} \]

⇒ Adapted decision rule taking into account the loss.
The Reject Option

- Classification errors arise from regions where the largest posterior probability \(p(C_k|x) \) is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.
Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions
 \[y_1(x), \ldots, y_K(x) \]
 - Classify \(x \) as class \(C_k \) if
 \[y_k(x) > y_j(x) \quad \forall j \neq k \]

- Examples (Bayes Decision Theory)
 \[y_k(x) = p(C_k | x) \]
 \[y_k(x) = p(x | C_k) p(C_k) \]
 \[y_k(x) = \log p(x | C_k) + \log p(C_k) \]
Different Views on the Decision Problem

• $y_k(x) \propto p(x|C_k)p(C_k)$
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - Then use Bayes’ theorem to determine class membership.
 ⇒ Generative methods

• $y_k(x) = p(C_k|x)$
 - First solve the inference problem of determining the posterior class probabilities.
 - Then use decision theory to assign each new x to its class.
 ⇒ Discriminative methods

• Alternative
 - Directly find a discriminant function $y_k(x)$ which maps each input x directly onto a class label.
Topics of This Lecture

• Bayes Decision Theory
 ➢ Basic concepts
 ➢ Minimizing the misclassification rate
 ➢ Minimizing the expected loss
 ➢ Discriminant functions

• Probability Density Estimation
 ➢ General concepts
 ➢ Gaussian distribution

• Parametric Methods
 ➢ Maximum Likelihood approach
 ➢ Bayesian vs. Frequentist views on probability
 ➢ Bayesian Learning
Probability Density Estimation

• Up to now
 - Bayes optimal classification
 - Based on the probabilities $p(x|C_k)p(C_k)$

• How can we estimate (=learn) those probability densities?
 - Supervised training case: data and class labels are known.
 - Estimate the probability density for each class C_k separately:
 $$p(x|C_k)$$
 - (For simplicity of notation, we will drop the class label C_k in the following.)
Probability Density Estimation

- Data: $x_1, x_2, x_3, x_4, \ldots$

- Estimate: $p(x)$

- Methods
 - Parametric representations (today)
 - Non-parametric representations (lecture 3)
 - Mixture models (lecture 4)
The Gaussian (or Normal) Distribution

- One-dimensional case
 - Mean \(\mu \)
 - Variance \(\sigma^2 \)

\[
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
\]

- Multi-dimensional case
 - Mean \(\mu \)
 - Covariance \(\Sigma \)

\[
\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

Image source: C.M. Bishop, 2006
Gaussian Distribution – Properties

• **Central Limit Theorem**
 - “The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.”
 - In practice, the convergence to a Gaussian can be very rapid.
 - This makes the Gaussian interesting for many applications.

• **Example:** N uniform $[0,1]$ random variables.
Gaussian Distribution – Properties

• Quadratic Form
 – \(\mathcal{N} \) depends on \(x \) through the exponent
 \[\Delta^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \]
 – Here, \(\Delta \) is often called the Mahalanobis distance from \(x \) to \(\mu \).

• Shape of the Gaussian
 – \(\Sigma \) is a real, symmetric matrix.
 – We can therefore decompose it into its eigenvectors
 \[\Sigma = \sum_{i=1}^{D} \lambda_i u_i u_i^T \quad \Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} u_i u_i^T \]
 and thus obtain
 \[\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i} \quad \text{with} \quad y_i = u_i^T (x - \mu) \]
 – ⇒ Constant density on ellipsoids with main directions along the eigenvectors \(u_i \) and scaling factors \(\sqrt{\lambda_i} \)

Image source: C.M. Bishop, 2006
Gaussian Distribution – Properties

• Special cases

 ➢ Full covariance matrix
 \[\Sigma = [\sigma_{ij}] \]
 \[\Rightarrow \text{General ellipsoid shape} \]

 ➢ Diagonal covariance matrix
 \[\Sigma = \text{diag}\{\sigma_i\} \]
 \[\Rightarrow \text{Axis-aligned ellipsoid} \]

 ➢ Uniform variance
 \[\Sigma = \sigma^2 I \]
 \[\Rightarrow \text{Hypersphere} \]
Gaussian Distribution – Properties

- The marginals of a Gaussian are again Gaussians:

\[p(x_a, x_b) \]

\[p(x_a | x_b = 0.7) \]

\[p(x_a) \]

Image source: C.M. Bishop, 2006
Topics of This Lecture

• Bayes Decision Theory
 ➢ Basic concepts
 ➢ Minimizing the misclassification rate
 ➢ Minimizing the expected loss
 ➢ Discriminant functions

• Probability Density Estimation
 ➢ General concepts
 ➢ Gaussian distribution

• Parametric Methods
 ➢ Maximum Likelihood approach
 ➢ Bayesian vs. Frequentist views on probability
 ➢ Bayesian Learning
Parametric Methods

- **Given**
 - Data $X = \{x_1, x_2, \ldots, x_N\}$
 - Parametric form of the distribution with parameters θ
 - E.g. for Gaussian distrib.: $\theta = (\mu, \sigma)$

- **Learning**
 - Estimation of the parameters θ

- **Likelihood of θ**
 - Probability that the data X have indeed been generated from a probability density with parameters θ
 $$L(\theta) = p(X|\theta)$$

Slide adapted from Bernt Schiele
Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: $p(x_n|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}$

- Assumption: all data points are independent
 $$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

- Log-likelihood
 $$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood
 - Minimize the negative log-likelihood
Maximum Likelihood Approach

- Likelihood: \(L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta) \)

- We want to obtain \(\hat{\theta} \) such that \(L(\hat{\theta}) \) is maximized.
Maximum Likelihood Approach

• Minimizing the log-likelihood
 ➢ How do we minimize a function?
 ⇒ Take the derivative and set it to zero.

\[
\frac{\partial}{\partial \theta} E(\theta) = - \frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n|\theta) = - \sum_{n=1}^{N} \frac{\partial p(x_n|\theta)}{p(x_n|\theta)} \overset{!}{=} 0
\]

• Log-likelihood for Normal distribution (1D case)

\[
E(\theta) = - \sum_{n=1}^{N} \ln p(x_n|\mu, \sigma)
\]

\[
= - \sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ - \frac{||x_n - \mu||^2}{2\sigma^2} \right\} \right)
\]
Maximum Likelihood Approach

• Minimizing the log-likelihood

\[
\frac{\partial}{\partial \mu} E(\mu, \sigma) = - \sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p(x_n|\mu, \sigma)}{p(x_n|\mu, \sigma)} \\
= - \sum_{n=1}^{N} \frac{2(x_n - \mu)}{2\sigma^2} \\
= \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu) \\
= \frac{1}{\sigma^2} \left(\sum_{n=1}^{N} x_n - N\mu \right) \\
\]

\[
p(x_n|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{||x_n-\mu||^2}{2\sigma^2}}
\]

\[
\frac{\partial}{\partial \mu} E(\mu, \sigma) = 0 \quad \Leftrightarrow \quad \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n
\]

B. Leibe
Maximum Likelihood Approach

- We thus obtain

\[\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \]

“sample mean”

- In a similar fashion, we get

\[\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \]

“sample variance”

- \(\hat{\theta} = (\hat{\mu}, \hat{\sigma}) \) is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.

- This is a very important result.

- Unfortunately, it is wrong…”
Maximum Likelihood Approach

• Or not wrong, but rather biased…

• Assume the samples x_1, x_2, \ldots, x_N come from a true Gaussian distribution with mean μ and variance σ^2

 We can now compute the expectations of the ML estimates with respect to the data set values. It can be shown that

 $$\mathbb{E}(\mu_{ML}) = \mu$$
 $$\mathbb{E}(\sigma^2_{ML}) = \left(\frac{N - 1}{N} \right) \sigma^2$$

 \Rightarrow The ML estimate will underestimate the true variance.

• Corrected estimate:

 $$\tilde{\sigma}^2 = \frac{N}{N - 1} \sigma^2_{ML} = \frac{1}{N - 1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$
Maximum Likelihood – Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case
 \[N = 1, X = \{ x_1 \} \]
 - Maximum-likelihood estimate:
 \[\hat{\sigma} = 0 ! \]
 \[\hat{\mu} \]
 \[x \]

 \[X = \{ x_1 \} \]
 - We say ML overfits to the observed data.
 - We will still often use ML, but it is important to know about this effect.
Deeper Reason

• Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.

• This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like each other too well…
Bayesian vs. Frequentist View

• To see the difference…
 ➢ Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 ➢ This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 ➢ In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 ➢ If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

\[\text{Posterior} \propto \text{Likelihood} \times \text{Prior} \]

➢ This generally allows to get better uncertainty estimates for many situations.

• Main Frequentist criticism
 ➢ The prior has to come from somewhere and if it is wrong, the result will be worse.
Bayesian Approach to Parameter Learning

• Conceptual shift
 - Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - In Bayesian learning, we consider θ to be a random variable.

• This allows us to use knowledge about the parameters θ
 - i.e. to use a prior for θ
 - Training data then converts this prior distribution on θ into a posterior probability density.
 - The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.
Bayesian Learning

• Bayesian Learning is an important concept
 - However, it would lead to far here.
 ⇒ I will introduce it in more detail in the Advanced ML lecture.
References and Further Reading

• More information in Bishop’s book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Bayesian Learning: Ch. 1.2.3 and 2.3.6.
 - Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006