Topics of This Lecture

- Recap: Classification with SVMs
 - Support Vector Machines
 - HOG Detector
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection
- Discussion

Recap: Sliding-Window Object Detection

- If the object may be in a cluttered scene, slide a window around looking for it.
- Essentially, this is a brute-force approach with many local decisions.

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[w^T x + b = 0 \]
- Formulation as a convex optimization problem
 - Find the hyperplane satisfying
 \[\arg\min_{w,b} \frac{1}{2}||w||^2 \]
 under the constraints
 \[f_n(w^T x_n + b) \geq 1 \quad \forall n \]
 based on training data points \(x_n \) and target values \(f_n \in \{-1, 1\} \).

Recap: Non-Linear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable.
Recap: Gradient-based Representations

- Consider edges, contours, and (oriented) intensity gradients
- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Pedestrian Detection

- Detecting upright, walking humans using sliding window’s appearance/texture; e.g.,

HOG Descriptor Processing Chain

- Optional: Gamma compression
 - Goal: Reduce effect of overly strong gradients
 - Replace each pixel color/intensity by its square-root

 \[
 x \mapsto \sqrt{x}
 \]
 - Small performance improvement

Topics of This Lecture

- Recap: Classification with SVMs
 - Support Vector Machines
 - HOG Detector
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection
- Discussion
HOG Descriptor Processing Chain

- **Spatial/Orientation binning**
 - Compute localized histograms of oriented gradients
 - Typical subdivision: 8x8 cells with 8 or 9 orientation bins

HOG Cell Computation Details

- **Gradient orientation voting**
 - Each pixel contributes to localized gradient orientation histogram(s)
 - Vote is weighted by the pixel’s gradient magnitude
 \[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]
 \[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

- **Block-level Gaussian weighting**
 - An additional Gaussian weight is applied to each 2x2 block of cells
 - Each cell is part of 4 such blocks, resulting in 4 versions of the histogram.

HOG Descriptor Processing Chain

- **2-Stage contrast normalization**
 - L2 normalization, clipping, L2 normalization

HOG Descriptor Processing Chain

- **Feature vector construction**
 - Collect HOG blocks into vector

HOG Descriptor Processing Chain

- **SVM Classification**
 - Typically using a linear SVM

HOG Cell Computation Details (2)

- **Important for robustness: Tri-linear interpolation**
 - Each pixel contributes to (up to) 4 neighboring cell histograms
 - Weights are obtained by bilinear interpolation in image space:
 \[r(x_1, y_1) = w \left(\frac{x - x_1}{x_2 - x_1}, \frac{y - y_1}{y_2 - y_1} \right) \]
 \[r(x_2, y_2) = w \left(\frac{x - x_2}{x_1 - x_2}, \frac{y - y_2}{y_1 - y_2} \right) \]
 \[r(x_2, y_1) = w \left(\frac{x - x_2}{x_1 - x_2}, \frac{y - y_1}{y_1 - y_2} \right) \]
 \[r(x_1, y_2) = w \left(\frac{x - x_1}{x_2 - x_1}, \frac{y - y_2}{y_2 - y_1} \right) \]
 - Contribution is further split over (up to) 2 neighboring orientation bins via linear interpolation over angles.
Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

Template

HOG feature map

Detector response map

Slide credit: Svetlana Lazebnik

Non-Maximum Suppression

Pedestrian detection with HoGs & SVMs

Slide credit: Kristen Grauman

Applications: Mobile Robot Navigation

Link to the video

Classifier Construction: Many Choices...

Nearest Neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005,
Boiman, Shechtman, Irani 2008, ...

Boosting

Viola, Jones 2001,
Torralba et al. 2004
Opelt et al. 2006,
Benenson 2012, ...

Support Vector Machines

Vapnik, Schölkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

Randomized Forests

Amit, Geman 1997,
Breiman 2001,
Lepetit, Fua 2006,
Gall, Lempitsky 2009, ...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998, ...

Boosting

- Build a strong classifier \(H \) by combining a number of “weak classifiers” \(h_1, \ldots, h_M \), which need only be better than chance.
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - Including fast simple classifiers that alone may be inaccurate
- We’ll look at Freund & Schapire’s AdaBoost algorithm
 - Easy to implement
 - Base learning algorithm for Viola-Jones face detector

Adaboost: Detailed Training Algorithm

1. Initialization: Set $w_{n}^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_{m}(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 \[J_{m} = \sum_{n=1}^{N} w_{n}^{(m)} I(h_{m}(x_{n}) \neq t_{n}) \]
 \[f(I) = \begin{cases} 1, & \text{if } I \text{ is true} \\ 0, & \text{otherwise} \end{cases} \]
 b) Estimate the weighted error of this classifier on X:
 \[\epsilon_{m} = \frac{\sum_{n=1}^{N} w_{n}^{(m)} I(h_{m}(x_{n}) \neq t_{n})}{\sum_{n=1}^{N} w_{n}^{(m)}} \]
 c) Calculate a weighting coefficient for $h_{m}(x)$:
 \[e_{m} = \ln \left(\frac{1 - \epsilon_{m}}{\epsilon_{m}} \right) \]
 d) Update the weighting coefficients:
 \[w_{n}^{(m+1)} = w_{n}^{(m)} \exp \{ e_{m} \cdot I(h_{m}(x_{n}) \neq t_{n}) \} \]

Adaboost: Recognition

- Evaluate all selected weak classifiers on test data.

- Final classifier is weighted combination of selected weak classifiers:
 \[H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_{m} h_{m}(x) \right) \]

- Very simple procedure!
 - Less than 10 lines in Matlab!
 - But works extremely well in practice.
Example: Face Detection
• Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
  Regular 2D structure
  Center of face almost shaped like a “patch”/window
• Now we’ll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction
“Rectangular” filters
Feature output is difference between adjacent regions
Efficiently computable with integral image: any sum can be computed in constant time
Avoid scaling images → scale features directly for same cost

Example
Integral image
\(h(x,y) = \begin{cases} +1 & \text{if } f(x,y) > \theta \\ -1 & \text{otherwise} \end{cases} \)

Use AdaBoost both to select the informative features and to form the classifier
Weak classifier: filter output > \(\theta \)

Large Library of Filters
Considering all possible filter parameters: position, scale, and type:
180,000+ possible features associated with each 24 x 24 window

AdaBoost for Feature+Classifier Selection
• Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:
For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection
• Image features = weak classifiers
• For each round of boosting:
  Evaluate each rectangle filter on each example
  Sort examples by filter values
  Select best threshold for each filter (min error)
  Sorted list can be quickly scanned for the optimal threshold
  Select best filter/threshold combination
  Weight on this features is a simple function of error rate
  Reweight examples

(first version appeared at CVPR 2001)
Cascading Classifiers for Detection

- Even if the filters are fast to compute, each new image has a lot of possible windows to search.
- For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,
 - Filter for promising regions with an initial inexpensive classifier
 - Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Viola-Jones Face Detector: Summary

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
 - 6061 features in final layer
 - [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]

Practical Issue: Bootstrapping

- Problem: 1 face in 116,440 examined windows
 - Can easily find negative examples, but which ones are useful?
 - Apply iterative training approach
 - False positives on negative validation images are included in training set as “hard negatives”
You Can Try It At Home...

- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/
- Matlab wrappers for OpenCV code available, e.g. here

Summary: Sliding-Windows

- Pros
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
 - Good detectors available (Viola & Jones, HOG, etc.)

- Cons/Limitations
 - High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - This puts tight constraints on the classifiers we can use.
 - If training binary detectors independently, this means cost increases linearly with number of classes.
 - With so many windows, false positive rate better be low

Example Application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006.
http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

You Can Try It At Home...

- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/
- Matlab wrappers for OpenCV code available, e.g. here

Summary: Sliding-Windows

- Pros
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes
 - Good detectors available (Viola & Jones, HOG, etc.)

- Cons/Limitations
 - High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - This puts tight constraints on the classifiers we can use.
 - If training binary detectors independently, this means cost increases linearly with number of classes.
 - With so many windows, false positive rate better be low

Feature Computation Trade-Off

- Linear SVM Detectors
 - Same computations performed for each image window
 - It pays off to precompute the features once
 - Complex features can be used

- AdaBoost Cascaded Detectors
 - Potentially different computations for each window location
 - May be more efficient to evaluate the features on-the-fly for each image window
 - If cascading shall be used, simple features are preferable

What Slows Down HOG (CUDA Implem.)

- Results from fastHOG (10fps) [Prisacariu & Reid 2009]
Limitations: Low Training Resolutions

- Many (older) S/W detectors operate on tiny images
 - Viola&Jones: 24x24 pixels
 - Torralba et al.: 32x32 pixels
 - Dalal&Triggs: 64x96 pixels (notable exception)
- Main reasons
 - Training efficiency (exhaustive feature selection in AdaBoost)
 - Evaluation speed
 - Want to recognize objects at small scales
- But...
 - Limited information content available at those resolutions
 - Not enough support to compensate for occlusions!

Limitations: Changing Aspect Ratios

- Sliding window requires fixed window size
 - Basis for learning efficient cascade classifier
- How to deal with changing aspect ratios?
 - Fixed window size
 ⇒ Wastes training dimensions
 - Adapted window size
 ⇒ Difficult to share features
 - “Squashed” views [Dalal&Triggs]
 ⇒ Need to squash test image, too

Limitations (continued)

- Not all objects are “box” shaped

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2D structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions
References and Further Reading

- Read the Viola-Jones paper
 - P. Viola, M. Jones,
 Robust Real-Time Face Detection.
 (first version appeared at CVPR 2001)

- Viola-Jones Face Detector
 - C++ implementation available in OpenCV [Lienhart, 2002]
 http://sourceforge.net/projects/opencvlibrary/
 - Matlab wrappers for OpenCV code available, e.g. here
 http://www.mathworks.com/matlabcentral/fileexchange/19912

- HOG Detector
 - Code available: http://pascal.inrialpes.fr/software/