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This Lecture: Advanced Machine Learning

A Regression Approaches f X = R

« Linear Regression

s Regularization (Ridge, Lasso) 1
. Kernels (Kernel Ridge Regression)
« Gaussian Processes : - e

M=9 R
05 ,

A Approximate Inference "

s  Sampling Approaches
i« MCMC

A Deep Learning
« Linear Discriminants
« Neural Networks
s Backpropagation & Optimization
i« CNNSs, ResNets, RNNs, Deep RL, etc.

B. Leibe

(o)
—i
«©
| -
(¢b)
+—
c
(@))
=
c
S
©
]
—l
&)
=
e
&)
]
=
©
(B)
&)
c
®
>
©
<




Topics of This Lecture

A Recap: Reinforcement Learning
o  Key Concepts
« Temporal Difference Learning

A Deep Reinforcement Learning
« Value based Deep RL
« Policy based Deep RL
s Model based Deep RL

A Applications
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Recap: Reinforcement Learning

A Motivation
« General purpose framework for decision making.
s Basis: Agent with the capability to interact with its environment
« Eachactioni nf |l uences t hestdegent 0s f ut
s Success is measured by a scalar reward signal.
« Goal: select actions to maximize future rewards

action

N

Apgent Environment

"N

observation, reward

s Formalized as a partially observable Markov decision process
(POMDP)
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Recap: Reward vs. Return

A Objective of learning

s We seek to maximize the expected return "O as some
function of the reward sequence Y hY hY I8

o Standard choice: expected discounted return
0O Y 1Y [y 8 [y
where 1 [ piscalled the discountrate .

A Difficulty

« We dondot know which past acti on
Y Temporal credit assignment problem
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Recap: Policy
A Definition
« A policy determines the agentaos

s Map from state to action “gn© !

A Two types of policies

s Deterministic policy: W “i
« Stochastic policy: “(Wi) 0B Y i}
A Note

s “ ()i ) denotes the probability of taking action ~ @when in state .
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Recap: Value Function

A 1dea

s Value function is a prediction of future reward
s Used to evaluate the goodness/badness of states
s And thus to select between actions

A Definition
s The value of a state i under a policy “, denoted U (i), is the
expected return when starting in i and following “ thereafter.
0 () M[OI'Y i] M[B 1Y 'Y ]

« The value of taking action win state i under a policy *“,
denoted n (i ), is the expected return starting from [,
taking action & and following “ thereafter.

n@{hy M[OY il & M[B 1Y 'Y i
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Recap: Optimal Value Functions

A Bellman optimality equations
. Forthe optimal state -value function u;:

0.() [ A@ (iR

I'N!A@ NG RTNI T0.3 )]
h
s U is the unique solution to this system of nonlinear equations.

« Forthe optimal action -value function 1).:

. (i P6) G RIRY [ 1T A R
h
s N is the unigque solution to this system of nonlinear equations.

Y If the dynamics of the environment  n(i h |i k) are known, then
In principle one can solve those equation systems.
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RWTH
Recap: Exploration -Exploitation Trade -off

A Example: N-armed bandit problem
s Suppose we have the choice between
U actions w8 ho .
: If we knew their value functions 1. iho |,
it would be trivial to choose the best.

s However, we only have estimates based
on our previous actions and their returns.

A We can now

« Exploit our current knowledge

0 And choose the greedy action that has the highest value based on
our current estimate.

s EXplore to gain additional knowledge

0 And choose a non-greedy action to improve our estimate of that
actionds value.
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Recap: TD-Learning

A Policy evaluation (the prediction problem)
« For agiven policy “, compute the state -value function 0 .

A One option: Monte -Carlo methods

« Play through a sequence of actions until a reward is reached,
then backpropagate it to the states on the path.

AN @Y) 1[0 Y]

Target: the actual return after time 0

A Temporal Difference Learning 0TD()
s Directly perform an update using the estimate WY

(VN oY) [ [Y [ Y WY ]

| € J
v

Target: an estimate of the return (here: TD(0))
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RWNTH
Recap: SARSAOOn-Policy TD Control

A 1dea

« Turn the TD idea into a control method by always updating the
policy to be greedy w.r.t. the current estimate

A Procedure

. Estimate ; iho for the current policy “ and for all states i and
actions @

« TD(0) update equation
OCY )N O(CY ) | [Y F Y ) 0 Y ]

« This rule is applied after every transition from a nonterminal
state Y.

: It uses every element of the quintuple YR Y RY
Y Hence, the name SARSA
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RWNTH
Recap: Q-Learning o Off-Policy TD Control

A 1dea

. Directly approximate the optimal action  -value function 1),
Independent of the policy being followed.

A Procedure
« TD(0) update equation
OCYB )N OCYB ) | [Y 1T ABCY R O YD |

« Dramatically simplifies the analysis of the algorithm.

« All that is required for correct convergence is that all pairs
continue to be updated.
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Approaches Towards RL

A Value-based RL

. Estimate the optimal value function 1. ihd
« This is the maximum value achievable under any policy

A Policy-based RL

o Search directly for the optimal policy “.
« This is the policy achieving maximum future reward

A Model-based RL

o Build a model of the environment
« Plan (e.g. by lookahead) using model
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

A Deep Reinforcement Learning
s Value based Deep RL
« Policy based Deep RL
s Model based Deep RL
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RWTH
Deep Reinforcement Learning

A RL using deep neural networks to approximate functions
« Value functions
d Measure goodness of states or state -action pairs
« Policies
d Select next action
s Dynamics Models
d Predict next states and rewards
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Deep Reinforcement Learning

A Use deep neural networks to represent
« Value function
« Policy
« Model
A Optimize loss function by stochastic gradient descent
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Q-Networks

A Represent value function by Q-Network with weights "

O(ihh1) 0. ihd

Q(s,a,w) Qfs,

%

[ #p]

—b——:m

2

0—7p = —
o

[z

o

3

3
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Deep Q-Learning

A 1dea

s Optimal Q-values should obey Bellman equation
0.(GFy W[ 11 Al R i
. Treattheright -handsidei [ | A@(i hohl) as atarget

«  Minimize MSE loss by stochastic gradient descent

0 "l (‘1 P A @G FORT) G(iFf;ﬁl))

« This converges to 0. using a lookup table representation.

« Unfortunately, it diverges using neural networks due to
0 Correlations between samples
d Non-stationary targets
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RWNTH
Deep Q-Networks (DQN): Experience Replay

A Adaptations

« TO remove correlati ons, bui |l d a
experience
51.491.M”.5
$2.ad2.13.53 — s.a.r.s
S3, 33, 4. S4

St.dt. Ft+1.5t+1 — Sty dt. Mt+1. St+1

« Perform minibatch updates to samples of experience drawn at
random from the pool of stored samples

z (iKhh )x "O)where O {i kA H  }is the dataset

« Advantages
0 Each experience sample is used in many updates (more efficient)
0 Avoids correlation effects when learning from consecutive samples
0 Avoids feeback loops from on -policy learning

Slide adapted from David Silver B. Leibe
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RWNTH
Deep Q-Networks (DQN): Experience Replay

A Adaptations

« TO remove correlati ons, bui |l d a
experience
51.491.M”.5
$2.ad2.13.53 — s.a.r.s
53.4d3,r4.54

St.dt. Ft+1.5t+1 — Sty dt. Mt+1. St+1

s  Sample from the dataset and apply an update

07l (‘1 T A®@G hohl ) G(iFrIﬁ'"l))
. To deal with non -stationary parameters ‘1 , are held fixed.
0 Only update the target network parameters every 0 steps.

d le., clone the network 0 to generate a target network 0.
Y Again, this reduces oscillations to make learning more stable.
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RWTHAACHEN

UNIVERSITY

Application: Deep RL In Atari

A Goal: Learning to play Atari games

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015

Convglution Convglution Fully cgnnected Fully cgnnected
O
~
SN |Nput: o\ e . Output:
m pixels L= 2\ 1 - control
=8 +game B o\ o E® commands
c Z: i 1
 scores S N\ e
= ¢ 0\
2 QE "9 ' ©Q: =
= i « /)
® g V /1
o e /] 4
= g 1// 1
5 e v/ 1
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Image source: Vlodimir Minh et al.
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

|dea Behind the Model

4 | action values Q(s,a) A Interpretation

A L2 Regression Loss

Reward received)

o Assume finite number of

« Each number here is a real -valued
Conubiat guantity that represents the
Q function in Reinforcement Learning

A Collect experience dataset:
. Setoftuples{(s, a,) s 0 .,r }
o (State, Action taken, New state,

actions

target value  predicted value

Li(0;) =Bs.ar.¢)~uD) ( r+ymax Q(s"a’: 0;)

O(s.a: 0;

)
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Current reward + estimate of future reward, discounted by



RWNTH
Results: Breakout

24

Video source: Vlodimir Minh et al.
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Results: Space Invaders
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Video source: Vlodimir Minh et al.



CHEN
. . UNIVERSITY
Comparison with Human Performance
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Learned Representation

287
LR 4

7RR
$ D A = X o ;
; e X ..,
: i R . o

A t-SNE embedding of DOQN last hidden layer (Space Inv.)

B. Leibe
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Improvements since Nature DQN

A Double DQN
. Remove upward bias caused by | A @ i hKhl

o Current Q-network X is used to select actions
o Older Q-network x is used to evaluate actions

0 7l (i rﬁ(iﬁ&(‘)gl’ﬁﬁia&bm hl ) G(iFrl'ﬁ”l))

A Prioritised replay
«  Weight experience according to surprise
«  Store experience in priority queue according to DON  error

i1 A ol ) 0@ R

Y Emphasize state transitions from which one can learn the most.
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RWNTH
Improvements since Nature DQN (2)

A Duelling network
o Split Q-network into two  channels
« Action -independent value function ® ih)
« Action -dependent advantage function 6 i hohl
N D(ihy) i) o kAl _
o Intuition: network can learn which states are valuable without
having to learn the effect of each action for each state.

A Combined Algorithm
« 3% mean Atari score vs. Nature DOQN
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

A Deep Reinforcement Learning
s Value based Deep RL
. Policy based Deep RL
s Model based Deep RL
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Deep Policy Networks

A Idea
. Represent policy by deep network with  weights O

G “(QiADT I iR
Define objective function as total discounted reward

OCn MO rio i 88" dil]

c:

Optimize effective end -to-end by SGD
l.e., adjust policy parameters I to achieve more reward

c:

c:
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Policy Gradients

A How to make high -value actions more likely
. The gradient of the stochastic policy  “ (i 1) is given by
Tolr T
ot
8¢

Mt 11 88 ¢l ]

A Wait 3how do we calculate that?
« Any ideas?
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Policy Gradients
A Deriving the gradient of an expectation
© « General case
® Moop Qo] A (G Q0
= (G Qo
: (W
S L N s
= — Qw
§ N NG
= N 1 THQNR-"00
&
- Vool 1 TG00
= 33
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Policy Gradients

A How to make high -value actions more likely
« The gradient of a stochastic policy  “ (i A1) is given by

1 0l ! ‘ ‘ ‘ L
= T,,IVI nri 7 8 s dl ]
TITQiim), ..

M [ o L lhD]

s The gradient of a deterministic policy @ “ i isgiven by

oo y 'O (hOT®
Tl T o 17

if &is continuous and U is differentiable.
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Actor -Critic Algorithm

A Procedure
. Estimate value function 0(iRh1) 0 ihod

(o)
- « Update policy parameters Oby stochastic gradient ascent
e Too | Qi) ., ... stochastic
2 — ! (ld )U | ol olic
= T K policy
= o or
(@))
<
C ~ N7 N . . .
S T 01 Toihhl T deterministic
é = T T policy
E
g
=
©
S
S
>
<
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RWNTH
Asynchronous Advantage Actor -Critic (A3C)

A Further Improvement
o  Estimate state -value function

(i) M N 8 si]
s Q-value estimated by an €-step sample
n 1 [ 8 o @i R
s Actor is updated towards target
PO T Ie@Ehli ) |
= o (N

« Critic is updated to minimize MSE w.r.t. target

O (1 (i ")

wi hl)

Y Combined effect: 4 ? mean Atari score vs. Nature DQN
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Deep Policy Gradients (DPG)

A DPG is the continuous analogue of DON
« Experience replay : build data -set from agent's experience
« Critic estimates value of current policy by DQON

O 1T (i r @ R/ i/ Al ) O@nA))

. To deal with non -stationarity, targets “I h1 are held fixed
Actor updates policy in direction thatimproves Q

c:

TO4°1 TO ikl T &
Tl r o 17

« In other words critic provides loss function for actor.
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Summary

A The future looks bright!

i« Soon, you wonoOot have to play vi
« Your computer can do it for you (and beat you at it)

A Reinforcement Learning is a very promising field
« Currently limited by the need for data
« At the moment, mainly restricted to simulation settings
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

A Deep Reinforcement Learning
s Value based Deep RL
« Policy based Deep RL
« Model based Deep RL
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RWTHAACHEN
. UNIVERSITY
Often Used in Games, E.g. Alpha Go
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