Advanced Machine Learning
Lecture 12

Tricks of the Trade II

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: Advanced Machine Learning

• Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

• Approximate Inference
 - Sampling Approaches
 - MCMC

• Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, ResNets, etc.
Topics of This Lecture

• Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization

• Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers

• Other Tricks
 - Batch Normalization
 - Dropout
Recap: Data Augmentation

- **Effect**
 - Much larger training set
 - Robustness against expected variations

- **During testing**
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Augmented training data (from one original image)

Image source: Lucas Beyer
Recap: Normalizing the Inputs

- **Convergence is fastest if**
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- **Advisable normalization steps (for MLPs)**
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).
Recap: Glorot Initialization

- **Variance of neuron activations**
 - Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - **We want the variance of the input and output of a unit to be the same**, therefore $n \ Var(W_i)$ should be 1. This means
 $$Var(W_i) = \frac{1}{n} = \frac{1}{n_{in}}$$
 - Or for the backpropagated gradient
 $$Var(W_i) = \frac{1}{n_{out}}$$
 - As a compromise, Glorot & Bengio propose to use
 $$Var(W) = \frac{2}{n_{in} + n_{out}}$$

⇒ Randomly sample the weights with this variance. That’s it.
Recap: He Initialization

- Extension of Glorot Initialization to ReLU units
 - Use Rectified Linear Units (ReLU)
 \[g(a) = \max\{0, a\} \]
 - Effect: gradient is propagated with a constant factor
 \[\frac{\partial g(a)}{\partial a} = \begin{cases}
 1, & a > 0 \\
 0, & \text{else}
 \end{cases} \]
- Same basic idea: Output should have the input variance
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - He et al. made the derivations, proposed to use instead
 \[\text{Var}(W) = \frac{2}{n_{\text{in}}} \]
Topics of This Lecture

- Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization

- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers

- Other Tricks
 - Batch Normalization
 - Dropout
Choosing the Right Learning Rate

- Analyzing the convergence of Gradient Descent
 - Consider a simple 1D example first
 \[W^{(\tau-1)} = W^{(\tau)} - \eta \frac{dE(W)}{dW} \]
 - What is the optimal learning rate \(\eta_{\text{opt}} \)?
 - If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \[\eta_{\text{opt}} = \left(\frac{d^2 E(W^{(\tau)})}{dW^2} \right)^{-1} \]
 - What happens if we exceed this learning rate?
Choosing the Right Learning Rate

- Behavior for different learning rates

\[E(\omega) \]

\[\eta < \eta_{\text{opt}} \]

\[\eta = \eta_{\text{opt}} \]

\[\eta > \eta_{\text{opt}} \]

\[\eta > 2 \eta_{\text{opt}} \]

Learning Rate vs. Training Error

Do not go beyond this point!

Image source: Goodfellow & Bengio book
Batch vs. Stochastic Learning

Batch Learning
- Simplest case: steepest decent on the error surface.
 \[\Rightarrow \text{Updates perpendicular to contour lines} \]

Stochastic Learning
- Simplest case: zig-zag around the direction of steepest descent.
 \[\Rightarrow \text{Updates perpendicular to constraints from training examples.} \]

Image source: Geoff Hinton
Why Learning Can Be Slow

• If the inputs are correlated
 ➢ The ellipse will be very elongated.
 ➢ The direction of steepest descent is almost perpendicular to the direction towards the minimum!

This is just the opposite of what we want!
The Momentum Method

• Idea
 - Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.

• Intuition
 - Example: Ball rolling on the error surface
 - It starts off by following the error surface, but once it has accumulated momentum, it no longer does steepest decent.

• Effect
 - Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
 - Build up speed in directions with a gentle but consistent gradient.
The Momentum Method: Implementation

- Change in the update equations
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.
 \[v(t) = \alpha v(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]
 - Set the weight change to the current velocity
 \[\Delta w = v(t) \]
 \[= \alpha v(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]
 \[= \alpha \Delta w(t-1) - \varepsilon \frac{\partial E}{\partial w}(t) \]

Slide credit: Geoff Hinton
The Momentum Method: Behavior

• Behavior
 - If the error surface is a tilted plane, the ball reaches a terminal velocity
 \[v(\infty) = \frac{1}{1 - \alpha} \left(-\varepsilon \frac{\partial E}{\partial w} \right) \]
 - If the momentum \(\alpha \) is close to 1, this is much faster than simple gradient descent.

 - At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., \(\alpha = 0.5 \)).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., \(\alpha = 0.90 \) or even \(\alpha = 0.99 \)).

⇒ This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Slide credit: Geoff Hinton
Improvement: Nesterov-Momentum

- **Standard Momentum method**
 - **First** compute the gradient at the current location
 - **Then** jump in the direction of the updated accumulated gradient

- **Improvement [Sutskever 2012]**
 - (Inspiration: Nesterov method for optimizing convex functions.)
 - **First** jump in the direction of the previous accumulated gradient
 - **Then** measure the gradient where you end up and make a correction.

 ⇒ **Intuition:** It’s better to correct a mistake *after* you’ve made it.
Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.
Separate, Adaptive Learning Rates

• Problem
 ➢ In multilayer nets, the appropriate learning rates can vary widely between weights.
 ➢ The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 ⇒ Gradients can get very small in the early layers of deep nets.
 ➢ The fan-in of a unit determines the size of the “overshoot” effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers

• Solution
 ➢ Use a global learning rate, multiplied by a local gain per weight (determined empirically)

Slide adapted from Geoff Hinton
Adaptive Learning Rates

• One possible strategy
 - Start with a local gain of 1 for every weight
 - Increase the local gain if the gradient for the weight does not change the sign.
 - Use small additive increases and multiplicative decreases (for mini-batch)

\[\Delta w_{ij} = -\varepsilon g_{ij} \frac{\partial E}{\partial w_{ij}} \]

if \[\left(\frac{\partial E}{\partial w_{ij}}(t) \frac{\partial E}{\partial w_{ij}}(t - 1) \right) > 0 \]

then \[g_{ij}(t) = g_{ij}(t - 1) + 0.05 \]

else \[g_{ij}(t) = g_{ij}(t - 1) \times 0.95 \]

⇒ Big gains will decay rapidly once oscillation starts.

Slide adapted from Geoff Hinton
Better Adaptation: RMSProp

• Motivation
 - The magnitude of the gradient can be very different for different weights and can change during learning.
 - This makes it hard to choose a single global learning rate.
 - For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

• Idea of RMSProp
 - Divide the gradient by a running average of its recent magnitude

\[\text{MeanSq}(w_{ij}, t) = 0.9 \text{MeanSq}(w_{ij}, t - 1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t) \right)^2\]

 - Divide the gradient by \(\sqrt{\text{MeanSq}(w_{ij}, t)}\).
Other Optimizers (Lucas)

- AdaGrad [Duchi ’10]
- AdaDelta [Zeiler ’12]
- Adam [Ba & Kingma ’14]

Notes
- All of those methods have the goal to make the optimization less sensitive to parameter settings.
- Adam is currently becoming the quasi-standard
Behavior in a Long Valley
Behavior around a Saddle Point

Visualization of Convergence Behavior

Trick: Patience

- Saddle points dominate in high-dimensional spaces!

⇒ Learning often doesn’t get stuck, you just may have to wait...
Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

- Be careful: Do not turn down the learning rate too soon!
 - Further progress will be much slower after that.
Topics of This Lecture

• Recap: Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization

• Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers

• Other Tricks
 - Batch Normalization
 - Dropout
Batch Normalization [Ioffe & Szegedy ’14]

• Motivation
 - Optimization works best if all inputs of a layer are normalized.

• Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients

• Effect
 - Much improved convergence
Dropout

[Srivastava, Hinton ’12]

- Idea
 - Randomly switch off units during training.
 - Change network architecture for each data point, effectively training many different variants of the network.
 - When applying the trained network, multiply activations with the probability that the unit was set to zero.

⇒ Greatly improved performance
References and Further Reading

- More information on many practical tricks can be found in Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
References

• ReLu

• Initialization
References and Further Reading

• Batch Normalization

• Dropout